期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Tuning the reactivity of TiO_(2)layer with uniform distribution of Sub-5 nm Fe_(2)O_(3)particles via in situ voltage-assisted oxidation for robust catalytic reduction 被引量:1
1
作者 Nisa Nashrah abdelkarim chaouiki +1 位作者 Wail Al Zoubi Young Gun Ko 《Nano Materials Science》 EI CAS CSCD 2024年第2期223-234,共12页
The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)... The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)O_(3)nanoparticles(NP)by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach.In situ simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe_(2)O_(3)NP embedded within porous TiO_(2)layer.Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO_(2)due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe;it also unexpectedly increased the active site in the TiO_(2)layer due to uncoordinated electrons in Sub-5 nm Fe_(2)O_(3)NP/TiO_(2)catalyst,thereby enhancing the adsorption of chemical functional groups on the catalyst.This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol,achieving approximately 99%efficiency in 20 min without stability decay after 20 consecutive cycles,outperforming previously reported TiO_(2)-based catalysts.This finding proposes a modified-electrochemical strategy enabling facile construction of TiO_(2)with nanoscale oxides extandable to other metal oxide systems. 展开更多
关键词 Titanium dioxide Oxide nanoparticle Electrochemical oxidation Surface reactivity Efficiency Stability
下载PDF
Recent Advances in Multifunctional Reticular Framework Nanoparticles:A Paradigm Shift in Materials Science Road to a Structured Future 被引量:2
2
作者 Maryam Chafiq abdelkarim chaouiki Young Gun Ko 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期435-502,共68页
Porous organic frameworks(POFs)have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials,both in their pristine state and when subjected to v... Porous organic frameworks(POFs)have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials,both in their pristine state and when subjected to various chemical and structural modifications.Metal–organic frameworks,covalent organic frameworks,and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties,such as high crystallinity,intrinsic porosity,unique structural regularity,diverse functionality,design flexibility,and outstanding stability.This review provides an overview of the state-of-the-art research on base-stable POFs,emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials.Thereafter,the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements.It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category. 展开更多
关键词 Porous organic framework Reticular chemistry Reticular framework nanoparticle Environmental remediation Multifunctional material
下载PDF
Fabrication of branch-like Aph@LDH-MgO material through organic-inorganic hybrid conjugation for excellent anti-corrosion performance
3
作者 Maryam Chafiq abdelkarim chaouiki +1 位作者 Rachid Salghi Young Gun Ko 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2469-2485,共17页
Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid mater... Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance. 展开更多
关键词 Magnesium alloy Surface modification LDH Organic-inorganic hybrid materials Inter-/intra-molecular interactions
下载PDF
Advanced prediction of organic–metal interactions through DFT study and electrochemical displacement approach
4
作者 abdelkarim chaouiki Wail Al Zoubi Young Gun Ko 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期301-316,共16页
Heterocyclic compounds are the promising biological compounds as nature-friendly for the corrosion protection of metallic surface.In this work,three heterocyclic compounds such as 1-azanaphthalene-8-ol(8-AN),2-methylq... Heterocyclic compounds are the promising biological compounds as nature-friendly for the corrosion protection of metallic surface.In this work,three heterocyclic compounds such as 1-azanaphthalene-8-ol(8-AN),2-methylquinoline-8-ol(8-MQ),and 8-quinolinol-5-sulfonic acid(8-QSA)were used as green compounds,and their anti-corrosion performance for AZ31 Mg in saline water was discussed on the basis of impedance interpretation and surface analysis.Findings found that the electrochemical performance was improved in the order of 8-AN>8-MQ>8-QSA,demonstrating the electron donor effect of N-heterocycles to form coordination complexes on the magnesium surface.From the electrochemical performance,the protective layer constructed at the optimal concentration reinforces the barrier against aggressive environments,with potential inhibition efficiency of 87.4%,99.0%,and 99.9%for 8-QSA,8-MQ,and 8-AN,respectively.Quantum chemical parameters and electron density distribution for free organic species in the absence and presence of Mg^(2+)cation were evaluated using density functional theory(DFT).Upon the formation of coordination complexes between organic compound and Mg^(2+),energy gap underwent change about ΔE=5.7 eV in the 8-AN/Mg^(2+)system.Furthermore,the adsorption of heterocyclic compounds on Mg surface reveals the formation of strong covalent bonds with Mg atoms,which further confirmed by the electron density difference and projected density of states analyses.Based on theoretical calculations,three inhibitors can adsorb on the metal surface in both parallel and perpendicular orientations via C,O and N atoms.In the parallel configuration,the C-Mg,N-Mg and O-Mg bond distances are between 2.11 and 2.25˚A,whereas the distances in the case of perpendicular adsorption are between 2.20 and 2.40˚A(covalent bonds via O and N atoms).The results indicated that parallel configurations are energetically more stable,in which the adsorption energies are-4.48 eV(8-AN),-4.28 eV(8-MQ)and-3.82 eV(8-QSA)compared to that of perpendicular adsorption(-3.65,-3.40,and-2.63 eV).As a result,experimental and theoretical studies were in well agreement and confirm that the nitrogen and oxygen atoms will be the main adsorption sites. 展开更多
关键词 Organic layer Heterocyclic compounds Electrochemical behavior DFT modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部