Cobalt ferrite was prepared by co-precipitation from cobalt and iron soluble precursors in presence of fulvic acid at different pHvalues, namely, 6 and 8 and compared with the same preparation in absence of fulvic aci...Cobalt ferrite was prepared by co-precipitation from cobalt and iron soluble precursors in presence of fulvic acid at different pHvalues, namely, 6 and 8 and compared with the same preparation in absence of fulvic acid. The presence of fulvic acid is expected tobind metal ions through bridging before co-precipitation and mineralization. The extent of binding is determined according to thepH of the process. This influences the mineralization of the resulting cobalt ferrite and the crystallization/ordering of its lattice. Inaddition, the extent of residual ferric oxide is also a function of the efficiency of binding process. This route of modification for the coprecipitationprocess was found to be accompanied by enhanced surface area and total pore volume for most of the prepared samples.The involvement of these oxides as catalysts in the photo-catalytic degradation of phenol from wastewater was found to contributevery efficiently and the removal reached about 88% in some cases, which can be attributed to olation and oxolation process of theformed nanoparticles.展开更多
基金The authors highly appreciate“Yunnan Provincial Reserve Talents for Middle&Young Academic and Technical Leaders(2019HB026)”“Ten-thousand Program”-youth talent support program,and the financial support from the administration of the National Research Centre-Egypt,as well as grant No.111814.
文摘Cobalt ferrite was prepared by co-precipitation from cobalt and iron soluble precursors in presence of fulvic acid at different pHvalues, namely, 6 and 8 and compared with the same preparation in absence of fulvic acid. The presence of fulvic acid is expected tobind metal ions through bridging before co-precipitation and mineralization. The extent of binding is determined according to thepH of the process. This influences the mineralization of the resulting cobalt ferrite and the crystallization/ordering of its lattice. Inaddition, the extent of residual ferric oxide is also a function of the efficiency of binding process. This route of modification for the coprecipitationprocess was found to be accompanied by enhanced surface area and total pore volume for most of the prepared samples.The involvement of these oxides as catalysts in the photo-catalytic degradation of phenol from wastewater was found to contributevery efficiently and the removal reached about 88% in some cases, which can be attributed to olation and oxolation process of theformed nanoparticles.