Effective disturbance indices for Hyrcanian forests in Kheyroud,Nowshahr,Iran were determined.The study area was divided into landscape mosaics based on ecosystem parameters including profile type,slope and elevation....Effective disturbance indices for Hyrcanian forests in Kheyroud,Nowshahr,Iran were determined.The study area was divided into landscape mosaics based on ecosystem parameters including profile type,slope and elevation.Co-occurrence texture indices were derived as forest disturbance factors on the first five bands of Landsat TM,ETM+and OLI images for the prevailing wood harvest disturbance regimes.These indices were screened using ten types of trend analyses and used for modeling disturbance of the harvesting regime through artificial neural networks.The results show that the selected indices can be useful in distinguishing areas with different disturbance intensities and as such,used in the context of health assessment through the health distance method.The accuracy of the health maps derived from the indices[increasing disturbance]led to give rise higher disturbance classification accuracy.展开更多
Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest los...Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest loss on surface water quality provides valuable information for forest management. This study predicts the future impacts of forest loss between 2010 and 2040 on P loading in the Tajan River watershed at the sub-watershed level. To understand drivers of the land cover, we used Land Change Modeler(LCM) combining with the Soil Water Assessment Tool(SWAT) model to simulate the impacts of land use change on P loading. We characterized priority management areas for locating comprehensive and cost-effective management practices at the sub-watershed level. Results show that agricultural expansion has led to an intense deforestation. During the future period 2010–2040, forest area is expected to decrease by 34,739 hm^2. And the areas of pasture and agriculture are expected to increase by 7668 and 27,071 hm^2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in all of sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds the American Public Health Association′s water quality standard of 0.2 mg/L for P in drinking water in both current and future scenarios in the Tajan River watershed. Only 30% of sub-watersheds will comply with the water quality standards by the year 2040. The finding of the present study highlights the importance of conserving forest area to maintain a stable water quality.展开更多
This paper focuses on the indicators of soil and litter health, disturbance, and landscape heterogeneity as a tool for prediction of ecosystem sustainability in the northern forests of Iran. The study area was divided...This paper focuses on the indicators of soil and litter health, disturbance, and landscape heterogeneity as a tool for prediction of ecosystem sustainability in the northern forests of Iran. The study area was divided into spatial homogenous sites using slope, aspect, and soil humidity classes. Then a range of sites along the disturbance gradient was selected for sampling. Chemical and physical indicators of soil and litter health were measured at random points within these sites. Structural equation modeling(SEM) was applied to link six constructs of landscape heterogeneity, three constructs of disturbance(harvest, livestock, and human accessibility), and soil and litter health. The results showed that with decreasing accessibility, the total N and organic matter content of soil increased and effective bulk density decreased. Harvesting activities increased soil organic matter. Therefore, it is concluded that disturbances through harvesting and accessibility inversely affect the soil health. Unexpectedly, it was found that the litter total C and C:N ratio improved with an increase in the harvest and accessibility disturbances, whereas litter bulk density decreased. Investigation of tree composition revealed that in the climax communities, which are normally affected more by harvesting activities, some species like Fagus orientalis Lipsky with low decomposition rate are dominant. The research results showed that changes in disturbance intensity are reflected in litter and soil indicators, whereas the SEM indicated that landscape heterogeneity has a moderator effect on the disturbance to both litter and soil paths.展开更多
基金funded partly by University of Zabol under Grant Number UOZ-GR-9616-145.
文摘Effective disturbance indices for Hyrcanian forests in Kheyroud,Nowshahr,Iran were determined.The study area was divided into landscape mosaics based on ecosystem parameters including profile type,slope and elevation.Co-occurrence texture indices were derived as forest disturbance factors on the first five bands of Landsat TM,ETM+and OLI images for the prevailing wood harvest disturbance regimes.These indices were screened using ten types of trend analyses and used for modeling disturbance of the harvesting regime through artificial neural networks.The results show that the selected indices can be useful in distinguishing areas with different disturbance intensities and as such,used in the context of health assessment through the health distance method.The accuracy of the health maps derived from the indices[increasing disturbance]led to give rise higher disturbance classification accuracy.
基金The Modares Tarbiat University of Iran funded this work
文摘Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest loss on surface water quality provides valuable information for forest management. This study predicts the future impacts of forest loss between 2010 and 2040 on P loading in the Tajan River watershed at the sub-watershed level. To understand drivers of the land cover, we used Land Change Modeler(LCM) combining with the Soil Water Assessment Tool(SWAT) model to simulate the impacts of land use change on P loading. We characterized priority management areas for locating comprehensive and cost-effective management practices at the sub-watershed level. Results show that agricultural expansion has led to an intense deforestation. During the future period 2010–2040, forest area is expected to decrease by 34,739 hm^2. And the areas of pasture and agriculture are expected to increase by 7668 and 27,071 hm^2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in all of sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds the American Public Health Association′s water quality standard of 0.2 mg/L for P in drinking water in both current and future scenarios in the Tajan River watershed. Only 30% of sub-watersheds will comply with the water quality standards by the year 2040. The finding of the present study highlights the importance of conserving forest area to maintain a stable water quality.
文摘This paper focuses on the indicators of soil and litter health, disturbance, and landscape heterogeneity as a tool for prediction of ecosystem sustainability in the northern forests of Iran. The study area was divided into spatial homogenous sites using slope, aspect, and soil humidity classes. Then a range of sites along the disturbance gradient was selected for sampling. Chemical and physical indicators of soil and litter health were measured at random points within these sites. Structural equation modeling(SEM) was applied to link six constructs of landscape heterogeneity, three constructs of disturbance(harvest, livestock, and human accessibility), and soil and litter health. The results showed that with decreasing accessibility, the total N and organic matter content of soil increased and effective bulk density decreased. Harvesting activities increased soil organic matter. Therefore, it is concluded that disturbances through harvesting and accessibility inversely affect the soil health. Unexpectedly, it was found that the litter total C and C:N ratio improved with an increase in the harvest and accessibility disturbances, whereas litter bulk density decreased. Investigation of tree composition revealed that in the climax communities, which are normally affected more by harvesting activities, some species like Fagus orientalis Lipsky with low decomposition rate are dominant. The research results showed that changes in disturbance intensity are reflected in litter and soil indicators, whereas the SEM indicated that landscape heterogeneity has a moderator effect on the disturbance to both litter and soil paths.