期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Chained Dual-Generative Adversarial Network:A Generalized Defense Against Adversarial Attacks 被引量:1
1
作者 Amitoj Bir Singh Lalit Kumar Awasthi +3 位作者 Urvashi Mohammad Shorfuzzaman abdulmajeed alsufyani Mueen Uddin 《Computers, Materials & Continua》 SCIE EI 2023年第2期2541-2555,共15页
Neural networks play a significant role in the field of image classification.When an input image is modified by adversarial attacks,the changes are imperceptible to the human eye,but it still leads to misclassificatio... Neural networks play a significant role in the field of image classification.When an input image is modified by adversarial attacks,the changes are imperceptible to the human eye,but it still leads to misclassification of the images.Researchers have demonstrated these attacks to make production self-driving cars misclassify StopRoad signs as 45 Miles Per Hour(MPH)road signs and a turtle being misclassified as AK47.Three primary types of defense approaches exist which can safeguard against such attacks i.e.,Gradient Masking,Robust Optimization,and Adversarial Example Detection.Very few approaches use Generative Adversarial Networks(GAN)for Defense against Adversarial Attacks.In this paper,we create a new approach to defend against adversarial attacks,dubbed Chained Dual-Generative Adversarial Network(CD-GAN)that tackles the defense against adversarial attacks by minimizing the perturbations of the adversarial image using iterative oversampling and undersampling using GANs.CD-GAN is created using two GANs,i.e.,CDGAN’s Sub-ResolutionGANandCDGAN’s Super-ResolutionGAN.The first is CDGAN’s Sub-Resolution GAN which takes the original resolution input image and oversamples it to generate a lower resolution neutralized image.The second is CDGAN’s Super-Resolution GAN which takes the output of the CDGAN’s Sub-Resolution and undersamples,it to generate the higher resolution image which removes any remaining perturbations.Chained Dual GAN is formed by chaining these two GANs together.Both of these GANs are trained independently.CDGAN’s Sub-Resolution GAN is trained using higher resolution adversarial images as inputs and lower resolution neutralized images as output image examples.Hence,this GAN downscales the image while removing adversarial attack noise.CDGAN’s Super-Resolution GAN is trained using lower resolution adversarial images as inputs and higher resolution neutralized images as output images.Because of this,it acts as an Upscaling GAN while removing the adversarial attak noise.Furthermore,CD-GAN has a modular design such that it can be prefixed to any existing classifier without any retraining or extra effort,and 2542 CMC,2023,vol.74,no.2 can defend any classifier model against adversarial attack.In this way,it is a Generalized Defense against adversarial attacks,capable of defending any classifier model against any attacks.This enables the user to directly integrate CD-GANwith an existing production deployed classifier smoothly.CD-GAN iteratively removes the adversarial noise using a multi-step approach in a modular approach.It performs comparably to the state of the arts with mean accuracy of 33.67 while using minimal compute resources in training. 展开更多
关键词 Adversarial attacks GAN-based adversarial defense image classification models adversarial defense
下载PDF
Exploiting Human Pose and Scene Information for Interaction Detection
2
作者 Manahil Waheed Samia Allaoua Chelloug +4 位作者 Mohammad Shorfuzzaman abdulmajeed alsufyani Ahmad Jalal Khaled Alnowaiser Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第3期5853-5870,共18页
Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has at... Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has attractedmany researchers to this field. Inspired by the existing recognition systems,this paper proposes a new and efficient human-object interaction recognition(HOIR) model which is based on modeling human pose and scene featureinformation. There are different aspects involved in an interaction, includingthe humans, the objects, the various body parts of the human, and the backgroundscene. Themain objectives of this research include critically examiningthe importance of all these elements in determining the interaction, estimatinghuman pose through image foresting transform (IFT), and detecting the performedinteractions based on an optimizedmulti-feature vector. The proposedmethodology has six main phases. The first phase involves preprocessing theimages. During preprocessing stages, the videos are converted into imageframes. Then their contrast is adjusted, and noise is removed. In the secondphase, the human-object pair is detected and extracted from each image frame.The third phase involves the identification of key body parts of the detectedhumans using IFT. The fourth phase relates to three different kinds of featureextraction techniques. Then these features are combined and optimized duringthe fifth phase. The optimized vector is used to classify the interactions in thelast phase. TheMSRDaily Activity 3D dataset has been used to test this modeland to prove its efficiency. The proposed system obtains an average accuracyof 91.7% on this dataset. 展开更多
关键词 Artificial intelligence daily activities human interactions human pose information image foresting transform scene feature information
下载PDF
Real Objects Understanding Using 3D Haptic Virtual Reality for E-Learning Education
3
作者 Samia Allaoua Chelloug Hamid Ashfaq +4 位作者 Suliman A.Alsuhibany Mohammad Shorfuzzaman abdulmajeed alsufyani Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第1期1607-1624,共18页
In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include obj... In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include object detection and object recognition.Moreover,wireless communication technologies are presently adopted and they have impacted the way of education that has been changed.There are different phases of changes in the traditional system.Perception of three-dimensional(3D)from two-dimensional(2D)image is one of the demanding tasks.Because human can easily perceive but making 3D using software will take time manually.Firstly,the blackboard has been replaced by projectors and other digital screens so such that people can understand the concept better through visualization.Secondly,the computer labs in schools are now more common than ever.Thirdly,online classes have become a reality.However,transferring to online education or e-learning is not without challenges.Therefore,we propose a method for improving the efficiency of e-learning.Our proposed system consists of twoand-a-half dimensional(2.5D)features extraction using machine learning and image processing.Then,these features are utilized to generate 3D mesh using ellipsoidal deformation method.After that,3D bounding box estimation is applied.Our results show that there is a need to move to 3D virtual reality(VR)with haptic sensors in the field of e-learning for a better understanding of real-world objects.Thus,people will have more information as compared to the traditional or simple online education tools.We compare our result with the ShapeNet dataset to check the accuracy of our proposed method.Our proposed system achieved an accuracy of 90.77%on plane class,85.72%on chair class,and car class have 72.14%.Mean accuracy of our method is 70.89%. 展开更多
关键词 Artificial intelligence E-LEARNING online education system computer vision virtual reality 3D haptic
下载PDF
Tracking and Analysis of Pedestrian’s Behavior in Public Places
4
作者 Mahwish Pervaiz Mohammad Shorfuzzaman +3 位作者 abdulmajeed alsufyani Ahmad Jalal Suliman A.Alsuhibany Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第1期841-853,共13页
Crowd management becomes a global concern due to increased population in urban areas.Better management of pedestrians leads to improved use of public places.Behavior of pedestrian’s is a major factor of crowd managem... Crowd management becomes a global concern due to increased population in urban areas.Better management of pedestrians leads to improved use of public places.Behavior of pedestrian’s is a major factor of crowd management in public places.There are multiple applications available in this area but the challenge is open due to complexity of crowd and depends on the environment.In this paper,we have proposed a new method for pedestrian’s behavior detection.Kalman filter has been used to detect pedestrian’s usingmovement based approach.Next,we have performed occlusion detection and removal using region shrinking method to isolate occluded humans.Human verification is performed on each human silhouette and wavelet analysis and particle gradient motion are extracted for each silhouettes.Gray Wolf Optimizer(GWO)has been utilized to optimize feature set and then behavior classification has been performed using the Extreme Gradient(XG)Boost classifier.Performance has been evaluated using pedestrian’s data from avenue and UBI-Fight datasets,where both have different environment.The mean achieved accuracies are 91.3%and 85.14%over the Avenue and UBI-Fight datasets,respectively.These results are more accurate as compared to other existing methods. 展开更多
关键词 Crowd management kalman filter region shrinking XG-Boost classifier
下载PDF
Automatic Clustering of User Behaviour Profiles for Web Recommendation System
5
作者 S.Sadesh Osamah Ibrahim Khalaf +3 位作者 Mohammad Shorfuzzaman abdulmajeed alsufyani K.Sangeetha Mueen Uddin 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3365-3384,共20页
Web usage mining,content mining,and structure mining comprise the web mining process.Web-Page Recommendation(WPR)development by incor-porating Data Mining Techniques(DMT)did not include end-users with improved perform... Web usage mining,content mining,and structure mining comprise the web mining process.Web-Page Recommendation(WPR)development by incor-porating Data Mining Techniques(DMT)did not include end-users with improved performance in the obtainedfiltering results.The cluster user profile-based clustering process is delayed when it has a low precision rate.Markov Chain Monte Carlo-Dynamic Clustering(MC2-DC)is based on the User Behavior Profile(UBP)model group’s similar user behavior on a dynamic update of UBP.The Reversible-Jump Concept(RJC)reviews the history with updated UBP and moves to appropriate clusters.Hamilton’s Filtering Framework(HFF)is designed tofilter user data based on personalised information on automatically updated UBP through the Search Engine(SE).The Hamilton Filtered Regime Switching User Query Probability(HFRSUQP)works forward the updated UBP for easy and accuratefiltering of users’interests and improves WPR.A Probabilistic User Result Feature Ranking based on Gaussian Distribution(PURFR-GD)has been developed to user rank results in a web mining process.PURFR-GD decreases the delay time in the end-to-end workflow for SE personalization in various meth-ods by using the Gaussian Distribution Function(GDF).The theoretical analysis and experiment results of the proposed MC2-DC method automatically increase the updated UBP accuracy by 18.78%.HFRSUQP enabled extensive Maximize Log-Likelihood(ML-L)increases to 15.28%of User Personalized Information Search Retrieval Rate(UPISRT).For feature ranking,the PURFR-GD model defines higher Classification Accuracy(CA)and Precision Ratio(PR)while uti-lising minimum Execution Time(ET).Furthermore,UPISRT's ranking perfor-mance has improved by 20%. 展开更多
关键词 Data mining web mining process search engine web-page recommendation ACCURACY
下载PDF
Suggestion Mining from Opinionated Text of Big Social Media Data 被引量:6
6
作者 Youseef Alotaibi Muhammad Noman Malik +4 位作者 Huma Hayat Khan Anab Batool Saif ul Islam abdulmajeed alsufyani Saleh Alghamdi 《Computers, Materials & Continua》 SCIE EI 2021年第9期3323-3338,共16页
:Social media data are rapidly increasing and constitute a source of user opinions and tips on a wide range of products and services.The increasing availability of such big data on biased reviews and blogs creates cha... :Social media data are rapidly increasing and constitute a source of user opinions and tips on a wide range of products and services.The increasing availability of such big data on biased reviews and blogs creates challenges for customers and businesses in reviewing all content in their decision-making process.To overcome this challenge,extracting suggestions from opinionated text is a possible solution.In this study,the characteristics of suggestions are analyzed and a suggestion mining extraction process is presented for classifying suggestive sentences from online customers’reviews.A classification using a word-embedding approach is used via the XGBoost classifier.The two datasets used in this experiment relate to online hotel reviews and Microsoft Windows App Studio discussion reviews.F1,precision,recall,and accuracy scores are calculated.The results demonstrated that the XGBoost classifier outperforms—with an accuracy of more than 80%.Moreover,the results revealed that suggestion keywords and phrases are the predominant features for suggestion extraction.Thus,this study contributes to knowledge and practice by comparing feature extraction classifiers and identifying XGBoost as a better suggestion mining process for identifying online reviews. 展开更多
关键词 Suggestion mining word embedding Naïve Bayes random forest XGBoost DATASET
下载PDF
Web Attack Detection Using the Input Validation Method:DPDA Theory 被引量:3
7
作者 Osamah Ibrahim Khalaf Munsif Sokiyna +2 位作者 Youseef Alotaibi abdulmajeed alsufyani Saleh Alghamdi 《Computers, Materials & Continua》 SCIE EI 2021年第9期3167-3184,共18页
A major issue while building web applications is proper input validation and sanitization.Attackers can quickly exploit errors and vulnerabilities that lead to malicious behavior in web application validation operatio... A major issue while building web applications is proper input validation and sanitization.Attackers can quickly exploit errors and vulnerabilities that lead to malicious behavior in web application validation operations.Attackers are rapidly improving their capabilities and technologies and now focus on exploiting vulnerabilities in web applications and compromising confidentiality.Cross-site scripting(XSS)and SQL injection attack(SQLIA)are attacks in which a hacker sends malicious inputs(cheat codes)to confuse a web application,to access or disable the application’s back-end without user awareness.In this paper,we explore the problem of detecting and removing bugs from both client-side and server-side code.A new idea that allows assault detection and prevention using the input validation mechanism is introduced.In addition,the project supports web security tests by providing easy-to-use and accurate models of vulnerability prediction and methods for validation.If these attributes imply a program statement that is vulnerable in an SQLIA,this can be evaluated and checked for a set of static code attributes.Additionally,we provide a script whitelisting interception layer built into the browser’s JavaScript engine,where the SQLIA is eventually detected and the XSS attack resolved using the method of input validation and script whitelisting under pushdown automatons.This framework was tested under a scenario of an SQL attack and XSS.It is demonstrated to offer an extensive improvement over the current framework.The framework’s main ability lies in the decrease of bogus positives.It has been demonstrated utilizing new methodologies,nevertheless giving unique access to sites dependent on the peculiarity score related to web demands.Our proposed input validation framework is shown to identify all anomalies and delivers better execution in contrast with the current program. 展开更多
关键词 STATIC dynamic DETECTION prevention input validation deterministic push down automata
下载PDF
A New Method for Scene Classification from the Remote Sensing Images 被引量:2
8
作者 Purnachand Kollapudi Saleh Alghamdi +3 位作者 Neenavath Veeraiah Youseef Alotaibi Sushma Thotakura abdulmajeed alsufyani 《Computers, Materials & Continua》 SCIE EI 2022年第7期1339-1355,共17页
The mission of classifying remote sensing pictures based on their contents has a range of applications in a variety of areas.In recent years,a lot of interest has been generated in researching remote sensing image sce... The mission of classifying remote sensing pictures based on their contents has a range of applications in a variety of areas.In recent years,a lot of interest has been generated in researching remote sensing image scene classification.Remote sensing image scene retrieval,and scene-driven remote sensing image object identification are included in the Remote sensing image scene understanding(RSISU)research.In the last several years,the number of deep learning(DL)methods that have emerged has caused the creation of new approaches to remote sensing image classification to gain major breakthroughs,providing new research and development possibilities for RS image classification.A new network called Pass Over(POEP)is proposed that utilizes both feature learning and end-to-end learning to solve the problem of picture scene comprehension using remote sensing imagery(RSISU).This article presents a method that combines feature fusion and extraction methods with classification algorithms for remote sensing for scene categorization.The benefits(POEP)include two advantages.The multi-resolution feature mapping is done first,using the POEP connections,and combines the several resolution-specific feature maps generated by the CNN,resulting in critical advantages for addressing the variation in RSISU data sets.Secondly,we are able to use Enhanced pooling tomake the most use of themulti-resolution feature maps that include second-order information.This enablesCNNs to better cope with(RSISU)issues by providing more representative feature learning.The data for this paper is stored in a UCI dataset with 21 types of pictures.In the beginning,the picture was pre-processed,then the features were retrieved using RESNET-50,Alexnet,and VGG-16 integration of architectures.After characteristics have been amalgamated and sent to the attention layer,after this characteristic has been fused,the process of classifying the data will take place.We utilize an ensemble classifier in our classification algorithm that utilizes the architecture of a Decision Tree and a Random Forest.Once the optimum findings have been found via performance analysis and comparison analysis. 展开更多
关键词 Remote sensing RSISU DL RESNET-50 VGG-16
下载PDF
Weapons Detection for Security and Video Surveillance Using CNN and YOLO-V5s 被引量:2
9
作者 Abdul Hanan Ashraf Muhammad Imran +5 位作者 Abdulrahman M.Qahtani abdulmajeed alsufyani Omar Almutiry Awais Mahmood Muhammad Attique Mohamed Habib 《Computers, Materials & Continua》 SCIE EI 2022年第2期2761-2775,共15页
In recent years,the number of Gun-related incidents has crossed over 250,000 per year and over 85%of the existing 1 billion firearms are in civilian hands,manual monitoring has not proven effective in detecting firear... In recent years,the number of Gun-related incidents has crossed over 250,000 per year and over 85%of the existing 1 billion firearms are in civilian hands,manual monitoring has not proven effective in detecting firearms.which is why an automated weapon detection system is needed.Various automated convolutional neural networks(CNN)weapon detection systems have been proposed in the past to generate good results.However,These techniques have high computation overhead and are slow to provide real-time detection which is essential for the weapon detection system.These models have a high rate of false negatives because they often fail to detect the guns due to the low quality and visibility issues of surveillance videos.This research work aims to minimize the rate of false negatives and false positives in weapon detection while keeping the speed of detection as a key parameter.The proposed framework is based on You Only Look Once(YOLO)and Area of Interest(AOI).Initially,themodels take pre-processed frames where the background is removed by the use of the Gaussian blur algorithm.The proposed architecture will be assessed through various performance parameters such as False Negative,False Positive,precision,recall rate,and F1 score.The results of this research work make it clear that due to YOLO-v5s high recall rate and speed of detection are achieved.Speed reached 0.010 s per frame compared to the 0.17 s of the Faster R-CNN.It is promising to be used in the field of security and weapon detection. 展开更多
关键词 Video surveillance weapon detection you only look once convolutional neural networks
下载PDF
Crowdsourced Requirements Engineering Challenges and Solutions:A Software Industry Perspective 被引量:2
10
作者 Huma Hayat Khan Muhammad Noman Malik +2 位作者 Youseef Alotaibi abdulmajeed alsufyani Saleh Alghamdi 《Computer Systems Science & Engineering》 SCIE EI 2021年第11期221-236,共16页
Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Beca... Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Because of its dynamic nature,SW CS has been progressively accepted and adopted in the software industry.However,issues pertinent to the understanding of requirements among crowds of people and requirements engineers are yet to be clarified and explained.If the requirements are not clear to the development team,it has a significant effect on the quality of the software product.This study aims to identify the potential challenges faced by requirements engineers when conducting the SW–CS based requirements engineering(RE)process.Moreover,solutions to overcome these challenges are also identified.Qualitative data analysis is performed on the interview data collected from software industry professionals.Consequently,20 SW–CS based RE challenges and their subsequent proposed solutions are devised,which are further grouped under seven categories.This study is beneficial for academicians,researchers and practitioners by providing detailed SW–CS based RE challenges and subsequent solutions that could eventually guide them to understand and effectively implement RE in SW CS. 展开更多
关键词 Software crowdsourced requirements engineering software industry software development SURVEY CHALLENGES
下载PDF
Visibility Enhancement of Scene Images Degraded by Foggy Weather Condition: An Application to Video Surveillance
11
作者 Ghulfam Zahra Muhammad Imran +4 位作者 Abdulrahman M.Qahtani abdulmajeed alsufyani Omar Almutiry Awais Mahmood Fayez Eid Alazemi 《Computers, Materials & Continua》 SCIE EI 2021年第9期3465-3481,共17页
:In recent years,video surveillance application played a significant role in our daily lives.Images taken during foggy and haze weather conditions for video surveillance application lose their authenticity and hence r... :In recent years,video surveillance application played a significant role in our daily lives.Images taken during foggy and haze weather conditions for video surveillance application lose their authenticity and hence reduces the visibility.The reason behind visibility enhancement of foggy and haze images is to help numerous computer and machine vision applications such as satellite imagery,object detection,target killing,and surveillance.To remove fog and enhance visibility,a number of visibility enhancement algorithms and methods have been proposed in the past.However,these techniques suffer from several limitations that place strong obstacles to the real world outdoor computer vision applications.The existing techniques do not perform well when images contain heavy fog,large white region and strong atmospheric light.This research work proposed a new framework to defog and dehaze the image in order to enhance the visibility of foggy and haze images.The proposed framework is based on a Conditional generative adversarial network(CGAN)with two networks;generator and discriminator,each having distinct properties.The generator network generates fog-free images from foggy images and discriminator network distinguishes between the restored image and the original fog-free image.Experiments are conducted on FRIDA dataset and haze images.To assess the performance of the proposed method on fog dataset,we use PSNR and SSIM,and for Haze dataset use e,r−,andσas performance metrics.Experimental results shows that the proposed method achieved higher values of PSNR and SSIM which is 18.23,0.823 and lower values produced by the compared method which are 13.94,0.791 and so on.Experimental results demonstrated that the proposed framework Has removed fog and enhanced the visibility of foggy and hazy images. 展开更多
关键词 Video surveillance degraded images image restoration transmission map visibility enhancement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部