As one of the most typical and promising membrane processes, electrodialysis(ED) technique plays a more and more significant role in industrial separation. Especially, the separation of monovalent cations and multival...As one of the most typical and promising membrane processes, electrodialysis(ED) technique plays a more and more significant role in industrial separation. Especially, the separation of monovalent cations and multivalent cations is currently a hot topic, which is not only desirable for many industries but also challenging for academic explorations. The main aim of the present contribution is to view the advances of a wide variety of monovalent cation perm-selective membranes(MCPMs) and their preparation technologies including(1) covalent crosslinking,(2) surface modification,(3) polymer blending,(4) electrospinning,(5) nanofiltration alike membrane,and(6) organic–inorganic hybrid. The relevant advantages and disadvantages with respect to some specific cases have been discussed and compared in detail. Furthermore, we elaborately discuss the opportunities and challenges of MCPMs, the fabricating strategies to take and the future perspectives.展开更多
Significant advancement in anion exchange membrane(AEM)fuel cell(AEMFC)technology is important in the field of renewable energy.AEMs with comb-shaped architectures have attracted considerable research interest because...Significant advancement in anion exchange membrane(AEM)fuel cell(AEMFC)technology is important in the field of renewable energy.AEMs with comb-shaped architectures have attracted considerable research interest because of some unique features,including high anion conductivity,low swelling,and high alkaline stability.Here,we report preparation,characterization,and performance evaluation of a novel comb-shaped cross-linked AEM synthesized by the thiol-ene click and Menshutkin reactions.The prepared ionomer decreases the trade-off between the water uptake and the conductivity.The thiol-ene click reaction was used to synthesize the 1,14-di(1H-imidazol-1-yl)-6,9-dioxa-3,12-dithiatetradecane(IDDT)cross-linker.IDDT was then introduced into the brominated poly(2,6-dimethyl-1,4-phenylene oxide)backbone by the Menshutkin reaction.The prepared ionomers show high thermomechanical stability,which is needed in AEMFC technology.The CLINK-15-100 membrane(ion exchange capacity 1.23 mmol/g)shows relatively good conductivities of 19.66 and 34.91 mS/cm at 30 and 60℃,respectively.Interestingly,the membrane shows water uptake of only 14.22%at room temperature,which is considerably lower than many previously reported membranes.After 16 days of alkaline treatment in 1 M NaOH solution at 60℃,the CLINK-15-100 membrane retains 77%of its initial conductivity,which is much better than the traditional quaternized poly(2,6-dimethyl-1,4-phenylene oxide)membrane.展开更多
基金Supported in part by the National Natural Science Foundation of China(21490581,21506200,21606215)K.C.Wong Education Foundation(2016-11)the China Postdoctoral Science Foundation(2015M570546)
文摘As one of the most typical and promising membrane processes, electrodialysis(ED) technique plays a more and more significant role in industrial separation. Especially, the separation of monovalent cations and multivalent cations is currently a hot topic, which is not only desirable for many industries but also challenging for academic explorations. The main aim of the present contribution is to view the advances of a wide variety of monovalent cation perm-selective membranes(MCPMs) and their preparation technologies including(1) covalent crosslinking,(2) surface modification,(3) polymer blending,(4) electrospinning,(5) nanofiltration alike membrane,and(6) organic–inorganic hybrid. The relevant advantages and disadvantages with respect to some specific cases have been discussed and compared in detail. Furthermore, we elaborately discuss the opportunities and challenges of MCPMs, the fabricating strategies to take and the future perspectives.
基金Financial support from the National Science Foundation of China(Nos.91534203,21490581)is gratefully acknowledged.A scholarship from the CAS-TWAS Presidents Fellowship is highly appreciated.
文摘Significant advancement in anion exchange membrane(AEM)fuel cell(AEMFC)technology is important in the field of renewable energy.AEMs with comb-shaped architectures have attracted considerable research interest because of some unique features,including high anion conductivity,low swelling,and high alkaline stability.Here,we report preparation,characterization,and performance evaluation of a novel comb-shaped cross-linked AEM synthesized by the thiol-ene click and Menshutkin reactions.The prepared ionomer decreases the trade-off between the water uptake and the conductivity.The thiol-ene click reaction was used to synthesize the 1,14-di(1H-imidazol-1-yl)-6,9-dioxa-3,12-dithiatetradecane(IDDT)cross-linker.IDDT was then introduced into the brominated poly(2,6-dimethyl-1,4-phenylene oxide)backbone by the Menshutkin reaction.The prepared ionomers show high thermomechanical stability,which is needed in AEMFC technology.The CLINK-15-100 membrane(ion exchange capacity 1.23 mmol/g)shows relatively good conductivities of 19.66 and 34.91 mS/cm at 30 and 60℃,respectively.Interestingly,the membrane shows water uptake of only 14.22%at room temperature,which is considerably lower than many previously reported membranes.After 16 days of alkaline treatment in 1 M NaOH solution at 60℃,the CLINK-15-100 membrane retains 77%of its initial conductivity,which is much better than the traditional quaternized poly(2,6-dimethyl-1,4-phenylene oxide)membrane.