This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf o...This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal performance.The EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was built.To train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was collected.Based on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive precision.Experimental consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)phases.The outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness.展开更多
This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project sche...This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project scheduling in tunnelling and underground projects in a rock environment.For this purpose,a sum of 185 datasets was collected from the literature and used to predict the ROP of TBM.Initially,the main dataset was utilised to construct and validate four conventional soft computing(CSC)models,i.e.minimax probability machine regression,relevance vector machine,extreme learning machine,and functional network.Consequently,the estimated outputs of CSC models were united and trained using an artificial neural network(ANN) to construct a hybrid ensemble model(HENSM).The outcomes of the proposed HENSM are superior to other CSC models employed in this study.Based on the experimental results(training RMSE=0.0283 and testing RMSE=0.0418),the newly proposed HENSM is potential to assist engineers in predicting ROP of TBM in the design phase of tunnelling and underground projects.展开更多
The study proposes an improved Harris hawks optimization(IHHO) algorithm by integrating the standard Harris hawks optimization(HHO) algorithm and mutation-based search mechanism for developing a high-performance machi...The study proposes an improved Harris hawks optimization(IHHO) algorithm by integrating the standard Harris hawks optimization(HHO) algorithm and mutation-based search mechanism for developing a high-performance machine learning solution for predicting soil compression index. HHO is a newly introduced meta-heuristic optimization algorithm(MOA) used to solve continuous search problems.Compared to the original HHO, the proposed IHHO can evade trapping in local optima, which in turn raises the search capabilities and enhances the search mechanism relying on mutation. Subsequently, a novel meta-heuristic-based soft computing technique called ELM-IHHO was established by integrating IHHO and extreme learning machine(ELM) to estimate soil compression index. A sum of 688 consolidation test data was collected for this purpose from an ongoing dedicated freight corridor railway project. To evaluate the generalization capability of the proposed ELM-IHHO model, a detailed comparison between ELM-IHHO and other well-established MOAs, such as particle swarm optimization,genetic algorithm, and biogeography-based optimization integrated with ELM, was performed. Based on the outcomes, the ELM-IHHO model exhibits superior performance over the other MOAs in predicting soil compression index.展开更多
Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid ar...Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.展开更多
In many civil engineering projects,Piled Raft Foundations(PRFs)are usually preferred where the incoming load fromthe superstructures is very high.In geotechnical engineering practice,the settlement of soil layers is a...In many civil engineering projects,Piled Raft Foundations(PRFs)are usually preferred where the incoming load fromthe superstructures is very high.In geotechnical engineering practice,the settlement of soil layers is a critical issue for the serviceability of the structures.Thus,assessment of risk associated with the structures corresponding to the maximum allowable settlement of soils needs to be carried out in the design phase.In this study,reliability analysis of PRF based on settlement criteria is performed using a high-performance hybrid soft computing model.The new approach is an integration of the artificial neural network(ANN)and a recently developed meta-heuristic algorithm called equilibrium optimizer(EO).The concept of reliability index was used to explore the feasibility of a newly constructed hybrid model of ANN and EO(i.e.,ANN-EO)against the conventional approach of calculating the probability of failure of PRF.Experimental results show that the proposed ANN-EO attained the most accurate prediction with R^(2)=0.9914 and RMSE=0.0518 in the testing phase,which are significantly better than those obtained from conventional ANN,multivariate adaptive regression splines,and genetic programming,including the ANNoptimized with particle swarmoptimization developed in this study.Based on the experimental results of different settlement values,the newly constructedANN-EOis very potential to analyze the risk associatedwith civil engineering structures.Also,the present study would significantly contribute to the knowledge pool of reliability studies related to piled raft systems because the works of literature on reliability analysis of piled raft systems are relatively scarce.展开更多
基金supported via funding from Prince Sattam Bin Abdulaziz University Project Number(PSAU/2023/R/1445).
文摘This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal performance.The EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was built.To train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was collected.Based on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive precision.Experimental consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)phases.The outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness.
文摘This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project scheduling in tunnelling and underground projects in a rock environment.For this purpose,a sum of 185 datasets was collected from the literature and used to predict the ROP of TBM.Initially,the main dataset was utilised to construct and validate four conventional soft computing(CSC)models,i.e.minimax probability machine regression,relevance vector machine,extreme learning machine,and functional network.Consequently,the estimated outputs of CSC models were united and trained using an artificial neural network(ANN) to construct a hybrid ensemble model(HENSM).The outcomes of the proposed HENSM are superior to other CSC models employed in this study.Based on the experimental results(training RMSE=0.0283 and testing RMSE=0.0418),the newly proposed HENSM is potential to assist engineers in predicting ROP of TBM in the design phase of tunnelling and underground projects.
文摘The study proposes an improved Harris hawks optimization(IHHO) algorithm by integrating the standard Harris hawks optimization(HHO) algorithm and mutation-based search mechanism for developing a high-performance machine learning solution for predicting soil compression index. HHO is a newly introduced meta-heuristic optimization algorithm(MOA) used to solve continuous search problems.Compared to the original HHO, the proposed IHHO can evade trapping in local optima, which in turn raises the search capabilities and enhances the search mechanism relying on mutation. Subsequently, a novel meta-heuristic-based soft computing technique called ELM-IHHO was established by integrating IHHO and extreme learning machine(ELM) to estimate soil compression index. A sum of 688 consolidation test data was collected for this purpose from an ongoing dedicated freight corridor railway project. To evaluate the generalization capability of the proposed ELM-IHHO model, a detailed comparison between ELM-IHHO and other well-established MOAs, such as particle swarm optimization,genetic algorithm, and biogeography-based optimization integrated with ELM, was performed. Based on the outcomes, the ELM-IHHO model exhibits superior performance over the other MOAs in predicting soil compression index.
文摘Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.
文摘In many civil engineering projects,Piled Raft Foundations(PRFs)are usually preferred where the incoming load fromthe superstructures is very high.In geotechnical engineering practice,the settlement of soil layers is a critical issue for the serviceability of the structures.Thus,assessment of risk associated with the structures corresponding to the maximum allowable settlement of soils needs to be carried out in the design phase.In this study,reliability analysis of PRF based on settlement criteria is performed using a high-performance hybrid soft computing model.The new approach is an integration of the artificial neural network(ANN)and a recently developed meta-heuristic algorithm called equilibrium optimizer(EO).The concept of reliability index was used to explore the feasibility of a newly constructed hybrid model of ANN and EO(i.e.,ANN-EO)against the conventional approach of calculating the probability of failure of PRF.Experimental results show that the proposed ANN-EO attained the most accurate prediction with R^(2)=0.9914 and RMSE=0.0518 in the testing phase,which are significantly better than those obtained from conventional ANN,multivariate adaptive regression splines,and genetic programming,including the ANNoptimized with particle swarmoptimization developed in this study.Based on the experimental results of different settlement values,the newly constructedANN-EOis very potential to analyze the risk associatedwith civil engineering structures.Also,the present study would significantly contribute to the knowledge pool of reliability studies related to piled raft systems because the works of literature on reliability analysis of piled raft systems are relatively scarce.