This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
As the climate change signs become more noticeable, the concern to prioritize sustainability within the AEC industry intensifies. This particularly pertained to issues related to the demand of resources, the excessive...As the climate change signs become more noticeable, the concern to prioritize sustainability within the AEC industry intensifies. This particularly pertained to issues related to the demand of resources, the excessive consumption of raw materials, and the associated generated waste. Presently, the construction industry is ranked among the industries that are accountable for the global generation of solid waste and energy consumption, leading to detrimental environmental effects. Nonetheless, over the years, construction methods, technological innovations, and building practices have made considerable progress, influenced by a growing emphasis on sustainability, especially in energy conservation and in adopting the Industrialized Production layer of Construction 4.0 (i.e., modular prefabrication, 3D concrete printing, and BIM). The concept of Circular Economy (CE) has been identified as a potential solution to achieve sustainability in building construction through the design, construction, and end-of-life deconstruction processes that enhance the management of waste based on the framework that is related to reducing, reusing, and recycling. Moreover, information and data related to geolocation complement advanced digital technologies by providing a collaborative platform that supports the application of CE as a practical approach to sustainability. Thus, this study will provide a straightforward methodology for developing a model that integrates BIM and sustainable design with Circular Economy’s concept to enhance the sustainability of construction projects to minimize their waste based on various construction methods (i.e., conventional, modular, and 3D concrete printing). The proposed model interrelates tools and data for the evaluation and planning strategies for the construction and deconstruction waste (CDW) management at the design stage, including estimating the quantities of the wasted materials, quantifying the production rates of selected equipment for the waste handling (loading and hauling) at the various stages of a project as well their associated cost. The proposed model will help users to calculate the quantity of construction and deconstruction waste (CDW) during the design of buildings based on their different construction methods at the early stage by using the concept of Design for Deconstruction (DfD);sustainable construction methods;and deconstruction process for waste management, which will lead to the suitable construction method.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. ...A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.展开更多
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘As the climate change signs become more noticeable, the concern to prioritize sustainability within the AEC industry intensifies. This particularly pertained to issues related to the demand of resources, the excessive consumption of raw materials, and the associated generated waste. Presently, the construction industry is ranked among the industries that are accountable for the global generation of solid waste and energy consumption, leading to detrimental environmental effects. Nonetheless, over the years, construction methods, technological innovations, and building practices have made considerable progress, influenced by a growing emphasis on sustainability, especially in energy conservation and in adopting the Industrialized Production layer of Construction 4.0 (i.e., modular prefabrication, 3D concrete printing, and BIM). The concept of Circular Economy (CE) has been identified as a potential solution to achieve sustainability in building construction through the design, construction, and end-of-life deconstruction processes that enhance the management of waste based on the framework that is related to reducing, reusing, and recycling. Moreover, information and data related to geolocation complement advanced digital technologies by providing a collaborative platform that supports the application of CE as a practical approach to sustainability. Thus, this study will provide a straightforward methodology for developing a model that integrates BIM and sustainable design with Circular Economy’s concept to enhance the sustainability of construction projects to minimize their waste based on various construction methods (i.e., conventional, modular, and 3D concrete printing). The proposed model interrelates tools and data for the evaluation and planning strategies for the construction and deconstruction waste (CDW) management at the design stage, including estimating the quantities of the wasted materials, quantifying the production rates of selected equipment for the waste handling (loading and hauling) at the various stages of a project as well their associated cost. The proposed model will help users to calculate the quantity of construction and deconstruction waste (CDW) during the design of buildings based on their different construction methods at the early stage by using the concept of Design for Deconstruction (DfD);sustainable construction methods;and deconstruction process for waste management, which will lead to the suitable construction method.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.