期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks(MANETS)
1
作者 ahmed alhussen Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第5期1903-1923,共21页
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne... Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities. 展开更多
关键词 Mobile AdHocNetworks(MANET) urban traffic prediction artificial intelligence(AI) traffic congestion chaotic spatial fuzzy polynomial neural network(CSFPNN)
下载PDF
Design of a Lightweight Compressed Video Stream-Based Patient Activity Monitoring System
2
作者 Sangeeta Yadav Preeti Gulia +5 位作者 Nasib Singh Gill Piyush Kumar Shukla Arfat Ahmad Khan Sultan Alharby ahmed alhussen Mohd Anul Haq 《Computers, Materials & Continua》 SCIE EI 2024年第1期1253-1274,共22页
Inpatient falls from beds in hospitals are a common problem.Such falls may result in severe injuries.This problem can be addressed by continuous monitoring of patients using cameras.Recent advancements in deep learnin... Inpatient falls from beds in hospitals are a common problem.Such falls may result in severe injuries.This problem can be addressed by continuous monitoring of patients using cameras.Recent advancements in deep learning-based video analytics have made this task of fall detection more effective and efficient.Along with fall detection,monitoring of different activities of the patients is also of significant concern to assess the improvement in their health.High computation-intensive models are required to monitor every action of the patient precisely.This requirement limits the applicability of such networks.Hence,to keep the model lightweight,the already designed fall detection networks can be extended to monitor the general activities of the patients along with the fall detection.Motivated by the same notion,we propose a novel,lightweight,and efficient patient activity monitoring system that broadly classifies the patients’activities into fall,activity,and rest classes based on their poses.The whole network comprises three sub-networks,namely a Convolutional Neural Networks(CNN)based video compression network,a Lightweight Pose Network(LPN)and a Residual Network(ResNet)Mixer block-based activity recognition network.The compression network compresses the video streams using deep learning networks for efficient storage and retrieval;after that,LPN estimates human poses.Finally,the activity recognition network classifies the patients’activities based on their poses.The proposed system shows an overall accuracy of approx.99.7% over a standard dataset with 99.63% fall detection accuracy and efficiently monitors different events,which may help monitor the falls and improve the inpatients’health. 展开更多
关键词 Fall detection activity recognition human pose estimation ACCURACY
下载PDF
Deep Learning-Based Mask Identification System Using ResNet Transfer Learning Architecture
3
作者 Arpit Jain Nageswara Rao Moparthi +5 位作者 A.Swathi Yogesh Kumar Sharma Nitin Mittal ahmed alhussen Zamil S.Alzamil MohdAnul Haq 《Computer Systems Science & Engineering》 2024年第2期341-362,共22页
Recently,the coronavirus disease 2019 has shown excellent attention in the global community regarding health and the economy.World Health Organization(WHO)and many others advised controlling Corona Virus Disease in 20... Recently,the coronavirus disease 2019 has shown excellent attention in the global community regarding health and the economy.World Health Organization(WHO)and many others advised controlling Corona Virus Disease in 2019.The limited treatment resources,medical resources,and unawareness of immunity is an essential horizon to unfold.Among all resources,wearing a mask is the primary non-pharmaceutical intervention to stop the spreading of the virus caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2)droplets.All countries made masks mandatory to prevent infection.For such enforcement,automatic and effective face detection systems are crucial.This study presents a face mask identification approach for static photos and real-time movies that distinguishes between images with and without masks.To contribute to society,we worked on mask detection of an individual to adhere to the rule and provide awareness to the public or organization.The paper aims to get detection accuracy using transfer learning from Residual Neural Network 50(ResNet-50)architecture and works on detection localization.The experiment is tested with other popular pre-trained models such as Deep Convolutional Neural Networks(AlexNet),Residual Neural Networks(ResNet),and Visual Geometry Group Networks(VGG-Net)advanced architecture.The proposed system generates an accuracy of 98.4%when modeled using Residual Neural Network 50(ResNet-50).Also,the precision and recall values are proved as better when compared to the existing models.This outstanding work also can be used in video surveillance applications. 展开更多
关键词 Transfer learning depth analysis convolutional neural networks(CNN) COVID-19
下载PDF
Brain Tumor Identification Using Data Augmentation and Transfer Learning Approach 被引量:2
4
作者 K.Kavin Kumar P.M.Dinesh +9 位作者 P.Rayavel L.Vijayaraja R.Dhanasekar Rupa Kesavan Kannadasan Raju Arfat Ahmad Khan Chitapong Wechtaisong Mohd Anul Haq Zamil S.Alzamil ahmed alhussen 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1845-1861,共17页
A brain tumor is a lethal neurological disease that affects the average performance of the brain and can be fatal.In India,around 15 million cases are diagnosed yearly.To mitigate the seriousness of the tumor it is es... A brain tumor is a lethal neurological disease that affects the average performance of the brain and can be fatal.In India,around 15 million cases are diagnosed yearly.To mitigate the seriousness of the tumor it is essential to diagnose at the beginning.Notwithstanding,the manual evaluation process utilizing Magnetic Resonance Imaging(MRI)causes a few worries,remarkably inefficient and inaccurate brain tumor diagnoses.Similarly,the examination process of brain tumors is intricate as they display high unbalance in nature like shape,size,appearance,and location.Therefore,a precise and expeditious prognosis of brain tumors is essential for implementing the of an implicit treatment.Several computer models adapted to diagnose the tumor,but the accuracy of the model needs to be tested.Considering all the above mentioned things,this work aims to identify the best classification system by considering the prediction accuracy out of Alex-Net,ResNet 50,and Inception V3.Data augmentation is performed on the database and fed into the three convolutions neural network(CNN)models.A comparison line is drawn between the three models based on accuracy and performance.An accuracy of 96.2%is obtained for AlexNet with augmentation and performed better than ResNet 50 and Inception V3 for the 120th epoch.With the suggested model with higher accuracy,it is highly reliable if brain tumors are diagnosed with available datasets. 展开更多
关键词 AlexNet brain tumor data augmentation inception V3 ResNet 50
下载PDF
Large Scale Fish Images Classification and Localization using Transfer Learning and Localization Aware CNN Architecture 被引量:1
5
作者 Usman Ahmad Muhammad Junaid Ali +7 位作者 Faizan ahmed Khan Arfat Ahmad Khan ArifUr Rehman Malik Muhammad Ali Shahid Mohd Anul Haq Ilyas Khan Zamil SAlzamil ahmed alhussen 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期2125-2140,共16页
Building an automatic fish recognition and detection system for largescale fish classes is helpful for marine researchers and marine scientists because there are large numbers of fish species.However,it is quite diffi... Building an automatic fish recognition and detection system for largescale fish classes is helpful for marine researchers and marine scientists because there are large numbers of fish species.However,it is quite difficult to build such systems owing to the lack of data imbalance problems and large number of classes.To solve these issues,we propose a transfer learning-based technique in which we use Efficient-Net,which is pre-trained on ImageNet dataset and fine-tuned on QuT Fish Database,which is a large scale dataset.Furthermore,prior to the activation layer,we use Global Average Pooling(GAP)instead of dense layer with the aim of averaging the results of predictions along with having more information compared to the dense layer.To check the validity of our model,we validate our model on the validation set which achieves satisfactory results.Also,for the localization task,we propose an architecture that consists of localization aware block,which captures localization information for better prediction and residual connections to handle the over-fitting problem.Actually,the residual connections help the layer to combine missing information with the relevant one.In addition,we use class weights and Focal Loss(FL)to handle class imbalance problems along with reducing false predictions.Actually,class weights assign less weights to classes having fewer instances and large weights to classes having more number of instances.During the localization,the qualitative assessment shows that we achieve 57%Mean Intersection Over Union(IoU)on testing data,and the classification results show 75%precision,70%recall,78%accuracy and 74%F1-Score for 468 fish species. 展开更多
关键词 Underwater species transfer learning k-nearest neighbors global average pooling efficientnet
下载PDF
Power Optimized Multiple-UAV Error-Free Network in Cognitive Environment
6
作者 Shakti Raj Chopra Parulpreet Singh +2 位作者 ahmed alhussen Nitin Mittal MohdAnul Haq 《Computers, Materials & Continua》 SCIE EI 2023年第5期3189-3201,共13页
Many extensive UAV communication networks have used UAV cooperative control.Wireless networking services can be offered using unmanned aerial vehicles(UAVs)as aerial base stations.Not only is coverage maximization,but... Many extensive UAV communication networks have used UAV cooperative control.Wireless networking services can be offered using unmanned aerial vehicles(UAVs)as aerial base stations.Not only is coverage maximization,but also better connectivity,a fundamental design challenge that must be solved.The number of applications for unmanned aerial vehicles(UAVs)operating in unlicensed bands is fast expanding as the Internet of Things(IoT)develops.Those bands,however,have become overcrowded as the number of systems that use them grows.Cognitive Radio(CR)and spectrum allocation approaches have emerged as a potential approach for resolving spectrum scarcity in wireless networks,and hence as technological solutions for future generations,from this perspective.As a result,combining CR with UAVs has the potential to give significant benefits for large-scale UAV deployment.The paper examines existing research on the subject of UAV covering and proposes a multi-UAV cognitive-based error-free model for energy-efficient communication.Coverage maximization,power control,and enhanced connection quality are the three steps of the proposed model.To satisfy the desired signal-to-noise ratio,the covering zone efficacy is investigated as a function of the distance among UAVs stationed in a specific geographic region depending on multiple deployment configurations like as rural,suburban,and urban macro deployment scenarios of the ITU-R M.2135 standard(SNR). 展开更多
关键词 UAV networks multi-UAV coverage ENERGY-EFFICIENT FER SNR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部