Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne...Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.展开更多
COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread.This spread of COVID-19 requires a fast technique for diagnosis to make the ap...COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread.This spread of COVID-19 requires a fast technique for diagnosis to make the appropriate decision for the treatment.X-ray images are one of the most classifiable images that are used widely in diagnosing patients’data depending on radiographs due to their structures and tissues that could be classified.Convolutional Neural Networks(CNN)is the most accurate classification technique used to diagnose COVID-19 because of the ability to use a different number of convolutional layers and its high classification accuracy.Classification using CNNs techniques requires a large number of images to learn and obtain satisfactory results.In this paper,we used SqueezNet with a modified output layer to classify X-ray images into three groups:COVID-19,normal,and pneumonia.In this study,we propose a deep learning method with enhance the features of X-ray images collected from Kaggle,Figshare to distinguish between COVID-19,Normal,and Pneumonia infection.In this regard,several techniques were used on the selected image samples which are Unsharp filter,Histogram equal,and Complement image to produce another view of the dataset.The Squeeze Net CNN model has been tested in two scenarios using the 13,437 X-ray images that include 4479 for each type(COVID-19,Normal and Pneumonia).In the first scenario,the model has been tested without any enhancement on the datasets.It achieved an accuracy of 91%.But,in the second scenario,the model was tested using the same previous images after being improved by several techniques and the performance was high at approximately 95%.The conclusion of this study is the used model gives higher accuracy results for enhanced images compared with the accuracy results for the original images.A comparison of the outcomes demonstrated the effectiveness of ourDLmethod for classifying COVID-19 based on enhanced X-ray images.展开更多
The recent global outbreak of COVID-19 damaged the world health systems,human health,economy,and daily life badly.None of the countries was ready to face this emerging health challenge.Health professionals were not ab...The recent global outbreak of COVID-19 damaged the world health systems,human health,economy,and daily life badly.None of the countries was ready to face this emerging health challenge.Health professionals were not able to predict its rise and next move,as well as the future curve and impact on lives in case of a similar pandemic situation happened.This created huge chaos globally,for longer and the world is still struggling to come up with any suitable solution.Here the better use of advanced technologies,such as artificial intelligence and deep learning,may aid healthcare practitioners in making reliable COVID-19 diagnoses.The proposed research would provide a prediction model that would use Artificial Intelligence and Deep Learning to improve the diagnostic process by reducing unreliable diagnostic interpretation of chest CT scans and allowing clinicians to accurately discriminate between patients who are sick with COVID-19 or pneumonia,and also empowering health professionals to distinguish chest CT scans of healthy people.The efforts done by the Saudi government for the management and control of COVID-19 are remarkable,however;there is a need to improve the diagnostics process for better perception.We used a data set from Saudi regions to build a prediction model that can help distinguish between COVID-19 cases and regular cases from CT scans.The proposed methodology was compared to current models and found to be more accurate(93 percent)than the existing methods.展开更多
Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning thes...Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning these parameters a sensitive step to maintain a good performance.On the other hand,and as any other classifier,the performance of SVM is also affected by the input set of features used to build the learning model,which makes the selection of relevant features an important task not only to preserve a good classification accuracy but also to reduce the dimensionality of datasets.In this paper,the MRFO+SVM algorithm is introduced by investigating the recent manta ray foraging optimizer to fine-tune the SVM parameters and identify the optimal feature subset simultaneously.The proposed approach is validated and compared with four SVM-based algorithms over eight benchmarking datasets.Additionally,it is applied to a disease Covid-19 dataset.The experimental results show the high ability of the proposed algorithm to find the appropriate SVM’s parameters,and its acceptable performance to deal with feature selection problem.展开更多
基金This work was funded by the Deanship of Scientific Research at Jouf University under Grant Number(DSR2022-RG-0102).
文摘Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.
文摘COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread.This spread of COVID-19 requires a fast technique for diagnosis to make the appropriate decision for the treatment.X-ray images are one of the most classifiable images that are used widely in diagnosing patients’data depending on radiographs due to their structures and tissues that could be classified.Convolutional Neural Networks(CNN)is the most accurate classification technique used to diagnose COVID-19 because of the ability to use a different number of convolutional layers and its high classification accuracy.Classification using CNNs techniques requires a large number of images to learn and obtain satisfactory results.In this paper,we used SqueezNet with a modified output layer to classify X-ray images into three groups:COVID-19,normal,and pneumonia.In this study,we propose a deep learning method with enhance the features of X-ray images collected from Kaggle,Figshare to distinguish between COVID-19,Normal,and Pneumonia infection.In this regard,several techniques were used on the selected image samples which are Unsharp filter,Histogram equal,and Complement image to produce another view of the dataset.The Squeeze Net CNN model has been tested in two scenarios using the 13,437 X-ray images that include 4479 for each type(COVID-19,Normal and Pneumonia).In the first scenario,the model has been tested without any enhancement on the datasets.It achieved an accuracy of 91%.But,in the second scenario,the model was tested using the same previous images after being improved by several techniques and the performance was high at approximately 95%.The conclusion of this study is the used model gives higher accuracy results for enhanced images compared with the accuracy results for the original images.A comparison of the outcomes demonstrated the effectiveness of ourDLmethod for classifying COVID-19 based on enhanced X-ray images.
基金the Deanship of Scientific Research at Jouf University for funding this work through research grant no(DSR2020-04-1533).
文摘The recent global outbreak of COVID-19 damaged the world health systems,human health,economy,and daily life badly.None of the countries was ready to face this emerging health challenge.Health professionals were not able to predict its rise and next move,as well as the future curve and impact on lives in case of a similar pandemic situation happened.This created huge chaos globally,for longer and the world is still struggling to come up with any suitable solution.Here the better use of advanced technologies,such as artificial intelligence and deep learning,may aid healthcare practitioners in making reliable COVID-19 diagnoses.The proposed research would provide a prediction model that would use Artificial Intelligence and Deep Learning to improve the diagnostic process by reducing unreliable diagnostic interpretation of chest CT scans and allowing clinicians to accurately discriminate between patients who are sick with COVID-19 or pneumonia,and also empowering health professionals to distinguish chest CT scans of healthy people.The efforts done by the Saudi government for the management and control of COVID-19 are remarkable,however;there is a need to improve the diagnostics process for better perception.We used a data set from Saudi regions to build a prediction model that can help distinguish between COVID-19 cases and regular cases from CT scans.The proposed methodology was compared to current models and found to be more accurate(93 percent)than the existing methods.
文摘Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning these parameters a sensitive step to maintain a good performance.On the other hand,and as any other classifier,the performance of SVM is also affected by the input set of features used to build the learning model,which makes the selection of relevant features an important task not only to preserve a good classification accuracy but also to reduce the dimensionality of datasets.In this paper,the MRFO+SVM algorithm is introduced by investigating the recent manta ray foraging optimizer to fine-tune the SVM parameters and identify the optimal feature subset simultaneously.The proposed approach is validated and compared with four SVM-based algorithms over eight benchmarking datasets.Additionally,it is applied to a disease Covid-19 dataset.The experimental results show the high ability of the proposed algorithm to find the appropriate SVM’s parameters,and its acceptable performance to deal with feature selection problem.