Deep learning(DL)plays a critical role in processing and converting data into knowledge and decisions.DL technologies have been applied in a variety of applications,including image,video,and genome sequence analysis.I...Deep learning(DL)plays a critical role in processing and converting data into knowledge and decisions.DL technologies have been applied in a variety of applications,including image,video,and genome sequence analysis.In deep learning the most widely utilized architecture is Convolutional Neural Networks(CNN)are taught discriminatory traits in a supervised environment.In comparison to other classic neural networks,CNN makes use of a limited number of artificial neurons,therefore it is ideal for the recognition and processing of wheat gene sequences.Wheat is an essential crop of cereals for people around the world.Wheat Genotypes identification has an impact on the possible development of many countries in the agricultural sector.In quantitative genetics prediction of genetic values is a central issue.Wheat is an allohexaploid(AABBDD)with three distinct genomes.The sizes of the wheat genome are quite large compared to many other kinds and the availability of a diversity of genetic knowledge and normal structure at breeding lines of wheat,Therefore,genome sequence approaches based on techniques of Artificial Intelligence(AI)are necessary.This paper focuses on using the Wheat genome sequence will assist wheat producers in making better use of their genetic resources and managing genetic variation in their breeding program,as well as propose a novel model based on deep learning for offering a fundamental overview of genomic prediction theory and current constraints.In this paper,the hyperparameters of the network are optimized in the CNN to decrease the requirement for manual search and enhance network performance using a new proposed model built on an optimization algorithm and Convolutional Neural Networks(CNN).展开更多
The ability of any steganography system to correctly retrieve the secret message is the primary criterion for measuring its efficiency.Recently,researchers have tried to generate a new natural image driven from only t...The ability of any steganography system to correctly retrieve the secret message is the primary criterion for measuring its efficiency.Recently,researchers have tried to generate a new natural image driven from only the secret message bits rather than using a cover to embed the secret message within it;this is called the stego image.This paper proposes a new secured coverless steganography system using a generative mathematical model based on semi Quick Response(QR)code and maze game image generation.This system consists of two components.The first component contains two processes,encryption process,and hiding process.The encryption process encrypts secret message bits in the form of a semi-QR code image whereas the hiding process conceals the pregenerated semi-QR code in the generated maze game image.On the other hand,the second component contains two processes,extraction and decryption,which are responsible for extracting the semi-QR code from the maze game image and then retrieving the original secret message from the extracted semi-QR code image,respectively.The results were obtained using the bit error rate(BER)metric.These results confirmed that the system achieved high hiding capacity,good performance,and a high level of robustness against attackers compared with other coverless steganography methods.展开更多
The accuracy offingerprint recognition model is extremely important due to its usage in forensic and securityfields.Anyfingerprint recognition system has particular network architecture whereas many other networks achiev...The accuracy offingerprint recognition model is extremely important due to its usage in forensic and securityfields.Anyfingerprint recognition system has particular network architecture whereas many other networks achieve higher accuracy.To solve this problem in a unified model,this paper proposes a model that can automatically specify itself.So,it is called an automatic deep neural net-work(ADNN).Our algorithm can specify the appropriate architecture of the neur-al network used and some significant parameters of this network.These parameters are the number offilters,epochs,and iterations.It guarantees the high-est accuracy by updating itself until achieving 99%accuracy then it stops and out-puts the result.Moreover,this paper proposes an end-to-end methodology for recognizing a person’s identity from the inputfingerprint image based on a resi-dual convolutional neural network.It is a complete system and is fully automated whether in the features extraction stage or the classification stage.Our goal is to automate thisfingerprint recognition system because the more automatic the sys-tem is,the more time and effort it saves.Our model also allows users to react by inputting the initial values of these parameters.Then,the model updates itself until itfinds the optimal values for the parameters and achieves the best accuracy.Another advantage of our algorithm is that it can recognize people from their thumb and otherfingers and its ability to recognize distorted samples.Our algo-rithm achieved 99.75%accuracy on the publicfingerprint dataset(SOCOFing).This is the best accuracy compared with other models.展开更多
The trend of digital information transformation has become a topic of interest.Many data are threatening;thus,protecting such data from attackers is considered an essential process.Recently,a new methodology for data ...The trend of digital information transformation has become a topic of interest.Many data are threatening;thus,protecting such data from attackers is considered an essential process.Recently,a new methodology for data concealing has been suggested by researchers called coverless steganography.Coverless steganography can be accomplished either by building an image database to match its image subblocks with the secret message to obtain the stego image or by generating an image.This paper proposes a coverless image steganography system based on pure image generation using secret message bits with a capacity higher than the other traditional systems.The system uses the secret message to generate the stego image in the form of one of the Intelligence Quotient(IQ)games,the maze.Firstly,a full grid is generated with several specific rows and columns determined from the number of bits of the secret message.Then,these bits are fed to the full grid to form the maze game stego image.Finally,the generated maze game stego image is sent to the recipient.The experimental results,using the Bit Error Rate(BER),were conducted,and confirmed the strength of this system represented by a high capacity,perfect performance,robustness,and stronger hiding system compared with existing coverless steganography systems.展开更多
Currently, relational database management systems (RDBMSs)face different challenges in application development due to the massive growthof unstructured and semi-structured data. This introduced new DBMS categories, kn...Currently, relational database management systems (RDBMSs)face different challenges in application development due to the massive growthof unstructured and semi-structured data. This introduced new DBMS categories, known as not only structured query language (NoSQL) DBMSs, whichdo not adhere to the relational model. The migration from relational databasesto NoSQL databases is challenging due to the data complexity. This study aimsto enhance the storage performance of RDBMSs in handling a variety of data.The paper presents two approaches. The first approach proposes a convenientrepresentation of unstructured data storage. Several extensive experimentswere implemented to assess the efficiency of this approach that could resultin substantial improvements in the RDBMSs storage. The second approachproposes using the JavaScript Object Notation (JSON) format to representmultivalued attributes and many to many (M:N) relationships in relationaldatabases to create a flexible schema and store semi-structured data. Theresults indicate that the proposed approaches outperform similar approachesand improve data storage performance, which helps preserve software stabilityin huge organizations by improving existing software packages whose replacement may be highly costly.展开更多
Big data applications in healthcare have provided a variety of solutions to reduce costs,errors,and waste.This work aims to develop a real-time system based on big medical data processing in the cloud for the predicti...Big data applications in healthcare have provided a variety of solutions to reduce costs,errors,and waste.This work aims to develop a real-time system based on big medical data processing in the cloud for the prediction of health issues.In the proposed scalable system,medical parameters are sent to Apache Spark to extract attributes from data and apply the proposed machine learning algorithm.In this way,healthcare risks can be predicted and sent as alerts and recommendations to users and healthcare providers.The proposed work also aims to provide an effective recommendation system by using streaming medical data,historical data on a user’s profile,and a knowledge database to make themost appropriate real-time recommendations and alerts based on the sensor’s measurements.This proposed scalable system works by tweeting the health status attributes of users.Their cloud profile receives the streaming healthcare data in real time by extracting the health attributes via a machine learning prediction algorithm to predict the users’health status.Subsequently,their status can be sent on demand to healthcare providers.Therefore,machine learning algorithms can be applied to stream health care data from wearables and provide users with insights into their health status.These algorithms can help healthcare providers and individuals focus on health risks and health status changes and consequently improve the quality of life.展开更多
In computer security,the number of malware threats is increasing and causing damage to systems for individuals or organizations,necessitating a new detection technique capable of detecting a new variant of malware mor...In computer security,the number of malware threats is increasing and causing damage to systems for individuals or organizations,necessitating a new detection technique capable of detecting a new variant of malware more efficiently than traditional anti-malware methods.Traditional antimalware software cannot detect new malware variants,and conventional techniques such as static analysis,dynamic analysis,and hybrid analysis are time-consuming and rely on domain experts.Visualization-based malware detection has recently gained popularity due to its accuracy,independence from domain experts,and faster detection time.Visualization-based malware detection uses the image representation of the malware binary and applies image processing techniques to the image.This paper aims to provide readers with a comprehensive understanding of malware detection and focuses on visualization-based malware detection.展开更多
基金This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)the National Research Foundation of Korea(NRF)grant funded by theKorea government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘Deep learning(DL)plays a critical role in processing and converting data into knowledge and decisions.DL technologies have been applied in a variety of applications,including image,video,and genome sequence analysis.In deep learning the most widely utilized architecture is Convolutional Neural Networks(CNN)are taught discriminatory traits in a supervised environment.In comparison to other classic neural networks,CNN makes use of a limited number of artificial neurons,therefore it is ideal for the recognition and processing of wheat gene sequences.Wheat is an essential crop of cereals for people around the world.Wheat Genotypes identification has an impact on the possible development of many countries in the agricultural sector.In quantitative genetics prediction of genetic values is a central issue.Wheat is an allohexaploid(AABBDD)with three distinct genomes.The sizes of the wheat genome are quite large compared to many other kinds and the availability of a diversity of genetic knowledge and normal structure at breeding lines of wheat,Therefore,genome sequence approaches based on techniques of Artificial Intelligence(AI)are necessary.This paper focuses on using the Wheat genome sequence will assist wheat producers in making better use of their genetic resources and managing genetic variation in their breeding program,as well as propose a novel model based on deep learning for offering a fundamental overview of genomic prediction theory and current constraints.In this paper,the hyperparameters of the network are optimized in the CNN to decrease the requirement for manual search and enhance network performance using a new proposed model built on an optimization algorithm and Convolutional Neural Networks(CNN).
基金This work was supported by the Korea Technology and Information Promotion Agency(TIPA)for SMEs grant funded by the Korea government(Ministry of SMEs and Startups)(No.S3271954)the National Research Foundation of Korea(NRF)grant funded by the korea government(MSIT)(No.2022H1D8A3038040)the Soonchunhyang University Research Fund.
文摘The ability of any steganography system to correctly retrieve the secret message is the primary criterion for measuring its efficiency.Recently,researchers have tried to generate a new natural image driven from only the secret message bits rather than using a cover to embed the secret message within it;this is called the stego image.This paper proposes a new secured coverless steganography system using a generative mathematical model based on semi Quick Response(QR)code and maze game image generation.This system consists of two components.The first component contains two processes,encryption process,and hiding process.The encryption process encrypts secret message bits in the form of a semi-QR code image whereas the hiding process conceals the pregenerated semi-QR code in the generated maze game image.On the other hand,the second component contains two processes,extraction and decryption,which are responsible for extracting the semi-QR code from the maze game image and then retrieving the original secret message from the extracted semi-QR code image,respectively.The results were obtained using the bit error rate(BER)metric.These results confirmed that the system achieved high hiding capacity,good performance,and a high level of robustness against attackers compared with other coverless steganography methods.
文摘The accuracy offingerprint recognition model is extremely important due to its usage in forensic and securityfields.Anyfingerprint recognition system has particular network architecture whereas many other networks achieve higher accuracy.To solve this problem in a unified model,this paper proposes a model that can automatically specify itself.So,it is called an automatic deep neural net-work(ADNN).Our algorithm can specify the appropriate architecture of the neur-al network used and some significant parameters of this network.These parameters are the number offilters,epochs,and iterations.It guarantees the high-est accuracy by updating itself until achieving 99%accuracy then it stops and out-puts the result.Moreover,this paper proposes an end-to-end methodology for recognizing a person’s identity from the inputfingerprint image based on a resi-dual convolutional neural network.It is a complete system and is fully automated whether in the features extraction stage or the classification stage.Our goal is to automate thisfingerprint recognition system because the more automatic the sys-tem is,the more time and effort it saves.Our model also allows users to react by inputting the initial values of these parameters.Then,the model updates itself until itfinds the optimal values for the parameters and achieves the best accuracy.Another advantage of our algorithm is that it can recognize people from their thumb and otherfingers and its ability to recognize distorted samples.Our algo-rithm achieved 99.75%accuracy on the publicfingerprint dataset(SOCOFing).This is the best accuracy compared with other models.
基金Taif University Researchers Supporting Project Number(TURSP-2020/239),Taif University,Taif,Saudi Arabia.
文摘The trend of digital information transformation has become a topic of interest.Many data are threatening;thus,protecting such data from attackers is considered an essential process.Recently,a new methodology for data concealing has been suggested by researchers called coverless steganography.Coverless steganography can be accomplished either by building an image database to match its image subblocks with the secret message to obtain the stego image or by generating an image.This paper proposes a coverless image steganography system based on pure image generation using secret message bits with a capacity higher than the other traditional systems.The system uses the secret message to generate the stego image in the form of one of the Intelligence Quotient(IQ)games,the maze.Firstly,a full grid is generated with several specific rows and columns determined from the number of bits of the secret message.Then,these bits are fed to the full grid to form the maze game stego image.Finally,the generated maze game stego image is sent to the recipient.The experimental results,using the Bit Error Rate(BER),were conducted,and confirmed the strength of this system represented by a high capacity,perfect performance,robustness,and stronger hiding system compared with existing coverless steganography systems.
基金This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(Grant Number:HI21C1831)and the Soonchunhyang University Research Fund.
文摘Currently, relational database management systems (RDBMSs)face different challenges in application development due to the massive growthof unstructured and semi-structured data. This introduced new DBMS categories, known as not only structured query language (NoSQL) DBMSs, whichdo not adhere to the relational model. The migration from relational databasesto NoSQL databases is challenging due to the data complexity. This study aimsto enhance the storage performance of RDBMSs in handling a variety of data.The paper presents two approaches. The first approach proposes a convenientrepresentation of unstructured data storage. Several extensive experimentswere implemented to assess the efficiency of this approach that could resultin substantial improvements in the RDBMSs storage. The second approachproposes using the JavaScript Object Notation (JSON) format to representmultivalued attributes and many to many (M:N) relationships in relationaldatabases to create a flexible schema and store semi-structured data. Theresults indicate that the proposed approaches outperform similar approachesand improve data storage performance, which helps preserve software stabilityin huge organizations by improving existing software packages whose replacement may be highly costly.
基金This study was financially supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),the Ministry of Health and Welfare(HI18C1216),and the Soonchunhyang University Research Fund.
文摘Big data applications in healthcare have provided a variety of solutions to reduce costs,errors,and waste.This work aims to develop a real-time system based on big medical data processing in the cloud for the prediction of health issues.In the proposed scalable system,medical parameters are sent to Apache Spark to extract attributes from data and apply the proposed machine learning algorithm.In this way,healthcare risks can be predicted and sent as alerts and recommendations to users and healthcare providers.The proposed work also aims to provide an effective recommendation system by using streaming medical data,historical data on a user’s profile,and a knowledge database to make themost appropriate real-time recommendations and alerts based on the sensor’s measurements.This proposed scalable system works by tweeting the health status attributes of users.Their cloud profile receives the streaming healthcare data in real time by extracting the health attributes via a machine learning prediction algorithm to predict the users’health status.Subsequently,their status can be sent on demand to healthcare providers.Therefore,machine learning algorithms can be applied to stream health care data from wearables and provide users with insights into their health status.These algorithms can help healthcare providers and individuals focus on health risks and health status changes and consequently improve the quality of life.
文摘In computer security,the number of malware threats is increasing and causing damage to systems for individuals or organizations,necessitating a new detection technique capable of detecting a new variant of malware more efficiently than traditional anti-malware methods.Traditional antimalware software cannot detect new malware variants,and conventional techniques such as static analysis,dynamic analysis,and hybrid analysis are time-consuming and rely on domain experts.Visualization-based malware detection has recently gained popularity due to its accuracy,independence from domain experts,and faster detection time.Visualization-based malware detection uses the image representation of the malware binary and applies image processing techniques to the image.This paper aims to provide readers with a comprehensive understanding of malware detection and focuses on visualization-based malware detection.