Methane decomposition reaction has been studied at three different activation temperatures(500℃,800℃ and950℃)over mesoporous alumina supported Ni–Fe and Mn–Fe based bimetallic catalysts.On co-impregnation of Ni...Methane decomposition reaction has been studied at three different activation temperatures(500℃,800℃ and950℃)over mesoporous alumina supported Ni–Fe and Mn–Fe based bimetallic catalysts.On co-impregnation of Ni on Fe/Al2O3the activity of the catalyst was retained even at the high activation temperature at 950℃ and up to180 min.The Ni promotion enhanced the reducibility of Fe/Al2O3oxides showing higher catalytic activity with a hydrogen yield of 69%.The reactivity of bimetallic Mn and Fe over Al2O3catalyst decreased at 800℃ and 950℃ activation temperatures.Regeneration studies revealed that the catalyst could be effectively recycled up to 9times.The addition of O2(1 ml,2 ml,4 ml)in the feed enhanced substantially CH4conversion,the yield of hydrogen and the stability of the catalyst.展开更多
Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with u...Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with unique properties.This work focused on the adsorption of Pb(Ⅱ)and Zn(Ⅱ)from binary system,a mixture containing two metal ion solutions present simultaneously,onto NaOH-modified CFA(MCFA).Several adsorption tests were conducted to evaluate the effect of several parameters,including pH and contact times.The experiment results indicated that chemical treatment of CFA with NaOH increased pore volume from 0.021 to 0.223 cm^3·g^(-1).In addition,it could also enhance the availability of functional groups on both minerals and unburned carbon,resulting in almost 100%Pb(Ⅱ)and 97%Zn(Ⅱ)adsorbed.The optimum pH for adsorption system was pH=3 and quasi-equilibrium occurred in 240 minutes.Equilibrium data from the experimental results were analyzed using Modified Extended Langmuir(MEL)and Competitive Adsorption Langmuir-Langmuir(CALL)isotherm models.The analysis results showed that the CALL isotherm model could better describe the Pb(Ⅱ)and Zn(Ⅱ)adsorption process onto MCFA in binary system compared with MEL isotherm model.展开更多
The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The ...The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.展开更多
基金the Deanship of Scientific Research at King Saud University for its funding this research group No.(RG-1436-119)
文摘Methane decomposition reaction has been studied at three different activation temperatures(500℃,800℃ and950℃)over mesoporous alumina supported Ni–Fe and Mn–Fe based bimetallic catalysts.On co-impregnation of Ni on Fe/Al2O3the activity of the catalyst was retained even at the high activation temperature at 950℃ and up to180 min.The Ni promotion enhanced the reducibility of Fe/Al2O3oxides showing higher catalytic activity with a hydrogen yield of 69%.The reactivity of bimetallic Mn and Fe over Al2O3catalyst decreased at 800℃ and 950℃ activation temperatures.Regeneration studies revealed that the catalyst could be effectively recycled up to 9times.The addition of O2(1 ml,2 ml,4 ml)in the feed enhanced substantially CH4conversion,the yield of hydrogen and the stability of the catalyst.
基金Deanship of Scientific Research(DSR)at King Saud University(KSU),Saudi Arabia for financially supporting this research project(No.RG-1435-078)。
文摘Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with unique properties.This work focused on the adsorption of Pb(Ⅱ)and Zn(Ⅱ)from binary system,a mixture containing two metal ion solutions present simultaneously,onto NaOH-modified CFA(MCFA).Several adsorption tests were conducted to evaluate the effect of several parameters,including pH and contact times.The experiment results indicated that chemical treatment of CFA with NaOH increased pore volume from 0.021 to 0.223 cm^3·g^(-1).In addition,it could also enhance the availability of functional groups on both minerals and unburned carbon,resulting in almost 100%Pb(Ⅱ)and 97%Zn(Ⅱ)adsorbed.The optimum pH for adsorption system was pH=3 and quasi-equilibrium occurred in 240 minutes.Equilibrium data from the experimental results were analyzed using Modified Extended Langmuir(MEL)and Competitive Adsorption Langmuir-Langmuir(CALL)isotherm models.The analysis results showed that the CALL isotherm model could better describe the Pb(Ⅱ)and Zn(Ⅱ)adsorption process onto MCFA in binary system compared with MEL isotherm model.
基金the Deanship of Scientific Research at KSU for funding the work through the research group Project # RGP-VPP119
文摘The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.