Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu...Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.展开更多
Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’walking patterns to be recognized.Existing research in this area has primarily focused on fe...Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’walking patterns to be recognized.Existing research in this area has primarily focused on feature analysis through the extraction of individual features,which captures most of the information but fails to capture subtle variations in gait dynamics.Therefore,a novel feature taxonomy and an approach for deriving a relationship between a function of one set of gait features with another set are introduced.The gait features extracted from body halves divided by anatomical planes on vertical,horizontal,and diagonal axes are grouped to form canonical gait covariates.Canonical Correlation Analysis is utilized to measure the strength of association between the canonical covariates of gait.Thus,gait assessment and identification are enhancedwhenmore semantic information is available through CCA-basedmulti-feature fusion.Hence,CarnegieMellon University’s 3D gait database,which contains 32 gait samples taken at different paces,is utilized in analyzing gait characteristics.The performance of Linear Discriminant Analysis,K-Nearest Neighbors,Naive Bayes,Artificial Neural Networks,and Support Vector Machines was improved by a 4%average when the CCA-utilized gait identification approachwas used.Asignificant maximumaccuracy rate of 97.8%was achieved throughCCA-based gait identification.Beyond that,the rate of false identifications and unrecognized gaits went down to half,demonstrating state-of-the-art for gait identification.展开更多
文摘Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.
基金supported by Istanbul University Scientific Research Project Department with IRP-51706 Project Number.
文摘Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’walking patterns to be recognized.Existing research in this area has primarily focused on feature analysis through the extraction of individual features,which captures most of the information but fails to capture subtle variations in gait dynamics.Therefore,a novel feature taxonomy and an approach for deriving a relationship between a function of one set of gait features with another set are introduced.The gait features extracted from body halves divided by anatomical planes on vertical,horizontal,and diagonal axes are grouped to form canonical gait covariates.Canonical Correlation Analysis is utilized to measure the strength of association between the canonical covariates of gait.Thus,gait assessment and identification are enhancedwhenmore semantic information is available through CCA-basedmulti-feature fusion.Hence,CarnegieMellon University’s 3D gait database,which contains 32 gait samples taken at different paces,is utilized in analyzing gait characteristics.The performance of Linear Discriminant Analysis,K-Nearest Neighbors,Naive Bayes,Artificial Neural Networks,and Support Vector Machines was improved by a 4%average when the CCA-utilized gait identification approachwas used.Asignificant maximumaccuracy rate of 97.8%was achieved throughCCA-based gait identification.Beyond that,the rate of false identifications and unrecognized gaits went down to half,demonstrating state-of-the-art for gait identification.