快速扩展随机树(rapidly-exploring random tree,RRT)无人机航迹规划方法能够快速获得满足约束要求的可行航迹,但是无法获得接近最短航迹的较优航迹。针对航迹的最优性问题,提出了混合种群RRT无人机航迹规划方法。在基于环境势场的RRT...快速扩展随机树(rapidly-exploring random tree,RRT)无人机航迹规划方法能够快速获得满足约束要求的可行航迹,但是无法获得接近最短航迹的较优航迹。针对航迹的最优性问题,提出了混合种群RRT无人机航迹规划方法。在基于环境势场的RRT算法的基础上,设计了一种种群优化方法,通过引入自优化种群和协同优化种群改善航迹段,使算法同时具有局部和全局寻优能力。在得到航迹节点的基础上,采用B样条曲线的平滑方法生成曲率连续的可跟踪航迹。仿真结果表明,所提算法能够综合考虑无人机航程代价和雷达威胁代价,快速地收敛得到接近最优且满足无人机动力学约束的可行航迹,在不同环境下也能有满意的收敛效率。展开更多
The evaluation of training effectiveness (TE) of military training aircraft, though obviously very important, appears to have attracted much less attention than what it deserves in the open literature. This article ...The evaluation of training effectiveness (TE) of military training aircraft, though obviously very important, appears to have attracted much less attention than what it deserves in the open literature. This article aims to start from previous studies and explore further. First, TE of military training aircraft is discussed and our ideas for evaluating TE which are expressed mathematically are proposed. Then, using the presented mathematical models, software is developed that takes into consideration the influence of parameters of flight performance and quality on TE. The software's environment is Borland C++ and it sets up the parameters of trainer, training standard databases and training documents; it can analyze and then give the operational cost and cost-effectiveness ratio of military trainer. Finally, the software is utilized to compare the TEs of HAWK and MB339 with that of Chinese Air Force TF-6. The results of comparison show that the TE of TF-6 is the lowest.展开更多
The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturban...The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturbance and parametric variations, both of which are intrinsic properties of the system that result in undesired control performance. A proportional-derivative control scheme based on nonlinear dynamic inversion is implemented as the baseline controller, and an L_1 adaptive controller is augmented to the baseline controller to attenuate the effects of input disturbance and parametric variations. Simulation results illustrate the effectiveness of the proposed control scheme.展开更多
文摘快速扩展随机树(rapidly-exploring random tree,RRT)无人机航迹规划方法能够快速获得满足约束要求的可行航迹,但是无法获得接近最短航迹的较优航迹。针对航迹的最优性问题,提出了混合种群RRT无人机航迹规划方法。在基于环境势场的RRT算法的基础上,设计了一种种群优化方法,通过引入自优化种群和协同优化种群改善航迹段,使算法同时具有局部和全局寻优能力。在得到航迹节点的基础上,采用B样条曲线的平滑方法生成曲率连续的可跟踪航迹。仿真结果表明,所提算法能够综合考虑无人机航程代价和雷达威胁代价,快速地收敛得到接近最优且满足无人机动力学约束的可行航迹,在不同环境下也能有满意的收敛效率。
文摘The evaluation of training effectiveness (TE) of military training aircraft, though obviously very important, appears to have attracted much less attention than what it deserves in the open literature. This article aims to start from previous studies and explore further. First, TE of military training aircraft is discussed and our ideas for evaluating TE which are expressed mathematically are proposed. Then, using the presented mathematical models, software is developed that takes into consideration the influence of parameters of flight performance and quality on TE. The software's environment is Borland C++ and it sets up the parameters of trainer, training standard databases and training documents; it can analyze and then give the operational cost and cost-effectiveness ratio of military trainer. Finally, the software is utilized to compare the TEs of HAWK and MB339 with that of Chinese Air Force TF-6. The results of comparison show that the TE of TF-6 is the lowest.
文摘The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturbance and parametric variations, both of which are intrinsic properties of the system that result in undesired control performance. A proportional-derivative control scheme based on nonlinear dynamic inversion is implemented as the baseline controller, and an L_1 adaptive controller is augmented to the baseline controller to attenuate the effects of input disturbance and parametric variations. Simulation results illustrate the effectiveness of the proposed control scheme.