The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,bi...The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.展开更多
The effects of oil film on the rolled surface, including surface roughness and topography, were investigated during cold rolling of aluminum strips. Various mineral oils with viscosities from 0.10 to 1.6 Pa.s were use...The effects of oil film on the rolled surface, including surface roughness and topography, were investigated during cold rolling of aluminum strips. Various mineral oils with viscosities from 0.10 to 1.6 Pa.s were used to obtain different oil film thicknesses. Results from experiment and calculation show that the thicker oil film protects the initial roughening surface so that it leads to an increase in roughness of the rolled surface, in particular when the surface roughness has the character of direction. The rolled surface roughness was determined by 2, which is the ratio of oil film thickness to the combined surface roughness. When 2 〉 3, the rolled surface roughness increases rapidly with the increase in oil viscosity, whereas the surface roughening has already occurred when 2 〈 3, but the increase of the rolled surface roughness with increasing viscosity is not distinct.展开更多
Objective: Monocytes/macrophages, proinflammatory cytokines and chemokines are important in the pathogenesis of glomerulonephritis. Interleukin (IL) -13 has been shown to exert potent anti-inflammatory properties. ...Objective: Monocytes/macrophages, proinflammatory cytokines and chemokines are important in the pathogenesis of glomerulonephritis. Interleukin (IL) -13 has been shown to exert potent anti-inflammatory properties. This study was designed to investigate the effect of IL-13 on the expression of proinflammatory cytokines, chemokines and profibrogenic cytokines and the involved molecular mechanism in cultured human mesangial cells (HMCs). Methods: The expressions of proinflammatory cytokines, chemokines and profibrogenic cytokines were determined by ribonuclease protection assay (RPA). Activity of nuclear factor-kappa B (NF-κB) and activa- tor protein-1 (AP-1) was examined by electrophoretic mobility shift assay (EMSA). NF-κB subunit p65 nuclear transportation and c-Jun N-terminal kinase (JNK) activity were assayed by immunoblot. Results: Recombinant IL-13 inhibited tumor necrosis factor-α (TNF-u), IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), IL-8, and transforming growth factor-β1 (TGF-β1) mRNA expressions in a dose-dependent manner. Lipopoly- sacchorides (LPS) dramatically increased NF-κB DNA binding activity of HMCs, which was inhibited by IL-13 in a dose-dependent manner. LPS-activated NF-κB contained p50 and p65 dimers, but not c-Rel subunit. IL-13 blocked LPS-induced NF-κB subunit p65. LPS stimulated JNK/AP-1 activation, which was inhibited by IL-13 in a dose-dependent manner. Conclusion: IL-13 inhibits proinflammatory cytokines, chemokines, and profibrogenic cytokines synthesis by blocking NF-κB and JNK/AP-1 activation. These observations point to the importance of IL-13 in the modulation of inflammatory processes in the renal glomerulus.展开更多
Tung oil(TO)/ultraviolet(UV)photo-composite curing material possesses the characteristics of low curing temperature,low material shrinkage and low environmental pollution.Accordingly,this material must be developed an...Tung oil(TO)/ultraviolet(UV)photo-composite curing material possesses the characteristics of low curing temperature,low material shrinkage and low environmental pollution.Accordingly,this material must be developed and utilized with the conjugated double bonds contained in the long chain of the main structure(α-tung acid)molecules in the refined TO.The aforementioned material can be chemically modified using a variety of chemical methods to develop a new TO-based UV photocurable material due to its unique chemical properties.This work reviews the research progress of TO/UV photo-composite curing materials in recent years.Firstly,the chemical structure and application of TO and UV Photocatalysis Technology were briefly introduced.Secondly,the research status of novel TO/UV photo-composite curing materials developed by the Diels-Alder reaction was discussed.The method and curing effect of the UVcuring system constructed by other chemically modified TO were also discussed.Thereafter,the application of TO in industrial production is introduced from four directions:the application of TO in biodiesel,the application in synthetic resin,the application in self-healing coating and microcapsules and other applications.Finally,the research and application prospects of TO/UV photo-composite curing materials were presented.展开更多
BACKGROUND: Dopamine receptors are divided into D1 and D2 subgroups. It has been reported that D2 receptors resist neural toxicity induced by excitatory amino acids and muscarine, and also alleviate epilepsy attacks ...BACKGROUND: Dopamine receptors are divided into D1 and D2 subgroups. It has been reported that D2 receptors resist neural toxicity induced by excitatory amino acids and muscarine, and also alleviate epilepsy attacks following pilocarpine treatment. However, it has not yet been established whether D2 receptors regulate temporal epilepsy. OBJECTIVE: To observe the effects of the D2 antagonist haloperidol on hippocampal neuronal apoptosis and electrical brain activity in a rat model of kainic acid-induced temporal epilepsy. DESIGN, TIME AND SETTING: Randomized grouping and histopathological study were performed at the Neurology Medicine Institute of Zhujiang Hospital, Southern Medical University from August to December 2004. MATERIALS: Twenty-five adult, male, Sprague Dawley rats were selected for the present study. Kainic acid (Sigma, USA) was injected into the right lateral ventricle to establish models of temporal epilepsy. A PowerLah multiplying channel eleetrophysiolograph was provided by AD Instruments, Australia. METHODS: The rats were randomly divided into 5 groups (n = 5): control, model, haloperidol hippocampus, haloperidol striatum, and haloperidol substantia nigra. Temporal epilepsy was established in all rats except the control group. Haloperidol was slowly injected into the hippocampus, striatum and substantia nigra, respectively, in three different injection groups. Normal saline was injected into the right lateral ventricle of the control rats. MAIN OUTCOME MEASURES: Hippocampal apoptosis was observed on the day 3 of treatment using TUNEL staining. Changes in electroencephalogram at 0, 0.5, 2, 6, and 12 hours following treatment onset were observed using a PowerLab multiplying channel electrophysiolograph. Animal behaviors were classified according to the Racine criteria. RESULTS: Twenty-five rats were included in the final analysis. Seizures did not occur in the control group. In the model group, 10 minutes after kainic acid injection to the lateral cerebral ventricle, epilepsy seizures occurred and reached a peak within one hour. Hippocampal neuronal apoptosis occurred following epilepsy, in particular on day 3. Following haloperidol injection, hippocampal neuronal apoptosis increased, in particular in the haloperidol hippocampus group, and was significantly greater than the model group (P 〈 0.05). CONCLUSION: Results suggested that D2 receptors inhibited temporal epilepsy. The hippocampal D2 receptors exhibited the strongest influence on temporal epilepsy in the hippocampus, followed by the suhstantia nigra and the striatum.展开更多
Objective The aim of this study was to investigate tumor volume changes with kilovoltage cone-beam computed tomography (kV-CBCT) and their dosimetric consequences for non-operative lung cancer during intensity-modul...Objective The aim of this study was to investigate tumor volume changes with kilovoltage cone-beam computed tomography (kV-CBCT) and their dosimetric consequences for non-operative lung cancer during intensity-modulated radiotherapy (IMRT) or fractionated stereotactic radiotherapy. Methods Eighteen patients with non-operative lung cancer who received IMRT consisting of 1.8-2.2 Gy/fraction and five fractions per week or stereotactic radiotherapy with 5-8 Gy/fraction and three fractions a week were studied, kV-CBCT was performed once per week during IMRT and at every fraction during stereotactic radiotherapy. The gross tumor volume (GTV) was contoured on the kV-CBCT images, and adaptive treatment plans were created using merged kV-CBCT and primary planning computed tomogra- phy image sets. Tumor volume changes and dosimetric parameters, including the minimum dose to 95% (D95) or 1% (D1) of the planning target volume (PTV), mean lung dose (MLD), and volume of lung tissue that received more than 5 (Vs), 10 (Vl0), 20 (V20), and 30 (V30) Gy were retrospectively analyzed. Results The average maximum change in GTV observed during IMRT or fractionated stereotactic radio- therapy was -25.85% (range, -13.09% --56.76%). The D95 and Dr of PTV for the adaptive treatment plans in all patients were not significantly different from those for the initial or former adaptive treatment plans. In patients with tumor volume changes of 〉20% in the third or fourth week of treatment during IMRT, adap- tive treatment plans offered clinically meaningful decreases in MLD and V5, V10, V20, and V30; however, in patients with tumor volume changes of 〈 20% in the third or fourth week of treatment as well as in patients with stereotactic radiotherapy, there were no significant or clinically meaningful decreases in the dosimetric parameters. Conclusion Adaptive treatment planning for decreasing tumor volume during IMRT may be beneficial for patients who experience tumor volume changes of 〉20% in the third or fourth week of treatment.展开更多
In Guizhou Province, the area of rocky desertification land is 3.023 8 million hm^2, accounting for 17.16% of total area of land in the province. Rocky desertification is the most important ecological problem that res...In Guizhou Province, the area of rocky desertification land is 3.023 8 million hm^2, accounting for 17.16% of total area of land in the province. Rocky desertification is the most important ecological problem that restricts the economic and social development in Guizhou, so the primary task of ecological construction in Guizhou Province is to curb rocky desertification. How to effectively, efficiently and persistently use rocky desertification land is not only the key to the improvement of ecological environment, but also an urgent problem solved for local people's survival and anti-poverty. Due to having developed roots, growing fast, high yield of grass, strong resistance to drought, and high regeneration capacity, Pennisetum sinese Roxb has become a new method to control rocky desertification. How to use P. sinese Roxb efficiently becomes the key to the ecological control of rocky desertification by P. sinese Roxb. In this study, the ecological agriculture development model of "P. sinese Roxb-rocky desertification control-edible mushrooms" was studied, and the effect of cultivating Pleurotus eryngii with P. sinese Roxb in rocky desertification land was analyzed. Moreover, an outlook for the application of P. sinese Roxb in rocky desertification areas of Guizhou was given.展开更多
The diseases of sweet cherry caused by viruses and viroids have occurred in the main cherry producing areas of China and are increasing year by year, which has become an important factor affecting the yield and qualit...The diseases of sweet cherry caused by viruses and viroids have occurred in the main cherry producing areas of China and are increasing year by year, which has become an important factor affecting the yield and quality of sweet cherry. For this reason, this paper elaborated the prevention and countermeasures of virus diseases from six aspects, including soil treatment, cultivation of disease-free seedlings, prevention of disease and pest damage, reasonable pruning, water management, and treatment of virus diseases, in order to provide technical guidance for the disease resistance, high quality and high yield of facility cherry, as well as information reference for the further improvement of the technical system of virus disease prevention and cultivation of facility cherry.展开更多
Sijunzi decoction (SJZD) is a Chinese classical formula to treat spleen qi deficiency syndrome (SQDS) and has been widely used for thousands of years.However,the quality control (QC) standards of SJZD are insufficient...Sijunzi decoction (SJZD) is a Chinese classical formula to treat spleen qi deficiency syndrome (SQDS) and has been widely used for thousands of years.However,the quality control (QC) standards of SJZD are insufficient.Chinmedomics has been designed to discover and verify bioactive compounds of a variety of formularapidly.In this study,we used Chinmedomics to evaluate the SJZD's efficacy against SQDS to discover the potential quality-markers (q-markers) for QC.A total of 56 compounds in SJZD were characterized in vitro,and 23 compounds were discovered in vivo.A total of 58 biomarkers were related to SQDS,and SJZD can adjust a large proportion of marker metabolites to normal level and then regulate the metabolic profile to the health status.A total of 10 constituents were absorbed as effective ingredients that were associated with overall efficacy.We preliminarily determined malonyl-ginsenoside Rb2 and ginsenoside Ro as the q-markers of ginseng;dehydrotumulosic acid and dihydroxy lanostene-triene-21-acid as the q-markers of poria;glycyrrhizic acid,isoglabrolide,and glycyrrhetnic acid as the q-markers of licorice;and 2-atractylenolide as the q-marker of macrocephala.According to the discovery of the SJZD q-markers,we can establish the quality standard that is related to efficacy.展开更多
Recent experiments have demonstrated that nanogenerators fabricated using two-dimensional MoS2 flakes may find potential applications in electromechanical sensing, wearable technology, pervasive computing, and implant...Recent experiments have demonstrated that nanogenerators fabricated using two-dimensional MoS2 flakes may find potential applications in electromechanical sensing, wearable technology, pervasive computing, and implanted devices. In the present study, we theoretically examined the effect of the number of atomic layers in MoS2 flakes on the nanogenerator output. Under a square-wave applied strain, MoS2 flakes with an even number of atomic layers did not exhibit a piezoelectric output, owing to the presence of a projected inversion symmetry. On the other hand, for MoS2 flakes with an odd number of layers, owing to the lack of inversion symmetry, piezoelectric output voltage and current were generated, and decreased with the increase of the number of layers. Furthermore, as MoS2 flakes were only a few atoms thick, the capacitance of the MoS2 nanogenerators was at least an order of magnitude smaller than that of the nanowire- and nanofilm-based nanogenerators, enabling the use of MoS2 nano- generators in high-frequency applications. Our results explain the experimental observations and provide guidance on optimizing and designing two-dimensional nanogenerators.展开更多
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is wellrecognizedhallmarks of diseases. Metabolite signatures that have close proximity to subject...Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is wellrecognizedhallmarks of diseases. Metabolite signatures that have close proximity to subject’s phenotypic informative dimension,are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers couldlead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity andselectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolicbiomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeuticpotentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathwayschanges as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists haveestablished a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutictarget exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-moleculecandidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening andtreatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.展开更多
High-throughput metabolomics can clarify the underlying molecular mechanism of diseases via the qualitative and quantitative analysis of metabolites.This study used the established Yang Huang syndrome(YHS)mouse model ...High-throughput metabolomics can clarify the underlying molecular mechanism of diseases via the qualitative and quantitative analysis of metabolites.This study used the established Yang Huang syndrome(YHS)mouse model to evaluate the efficacy of geniposide(GEN).Urine metabolic data were quantified by ultraperformance liquid chromatography-tandem mass spectrometry.The non-target screening of the massive biological information dataset was performed,and a total of 33 metabolites,including tyramine glucuronide,aurine,and L-cysteine,were identified relating to YHS.These differential metabolites directly participated in the disturbance of phase I reaction and hydrophilic transformation of bilirubin.Interestingly,they were completely reversed by GEN.While,as the auxiliary technical means,we also focused on the molecular prediction and docking results in network pharmacological and integrated analysis part.We used integrated analysis to communicate the multiple results of metabolomics and network pharmacology.This study is the first to report that GEN indirectly regulates the metabolite“tyramine glucuronide”through its direct effect on the target heme oxygenase 1 in vivo.Meanwhile,heme oxygenase-1,a prediction of network pharmacology,was the confirmed metabolic enzyme of phase I reaction in hepatocytes.Our study indicated that the combination of high-throughput metabolomics and network pharmacology is a robust combination for deciphering the pathogenesis of the traditional Chinese medicine(TCM)syndrome.展开更多
Enhanced phosphorus treatment and recovery has been continuously pursued due to the stringent wastewater discharge regulations and a phosphate supply shortage. Here, a new adsorption-membrane separation strategy was d...Enhanced phosphorus treatment and recovery has been continuously pursued due to the stringent wastewater discharge regulations and a phosphate supply shortage. Here, a new adsorption-membrane separation strategy was developed for rational reutilization of phosphate from sea cucumber aquaculture wastewater using a Zr-modified-bentonite filled polyvinyl chloride membrane. The as-obtained polyvinyl chloride/Zr-modified-bentonite membrane was highly permeability (940 L/(m2·h)), 1–2 times higher than those reported in other studies, and its adsorption capacity was high (20.6 mg/g) when the phosphate concentration in water was low (5 mg/L). It remained stable under various conditions, such as different pH, initial phosphate concentrations, and the presence of different ions after 24 h of adsorption in a cross-flow filtration system. The total phosphorus and phosphate removal rate reached 91.5% and 95.9%, respectively, after the membrane was used to treat sea cucumber aquaculture wastewater for 24 h and no other water quality parameters had been changed. After the purification process, the utilization of the membrane as a new source of phosphorus in the phosphorus-free f/2 medium experiments indicated the high cultivability of economic microalgae Phaeodactylum tricornutum FACHB-863 and 1.2 times more chlorophyll a was present than in f/2 medium. The biomass and lipid content of the microalgae in the two different media were similar. The innovative polyvinyl chloride/Zr-modified-bentonite membrane used for phosphorus removal and recovery is an important instrument to establish the groundwork for both the treatment of low concentration phosphate from wastewater as well as the reuse of enriched phosphorus in required fields.展开更多
Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as t...Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as the piezotronic effect. For devices whose dimension is much smaller than the mean free path of carriers (such as a single atomic layer of MoS2), ballistic transport occurs. In this study, transport in the monolayer MoS2 piezotronic transistor is studied by presenting analytical solutions for two-dimensional (2D) MoS2. Furthermore, a numerical simulation for guiding future 2D piezotronic nanodevice design is presented.展开更多
Flexible sensors have been widely investigated due to their broad application prospects in various flexible electronics.However,most of the presently studied flexible sensors are only suitable for working at room temp...Flexible sensors have been widely investigated due to their broad application prospects in various flexible electronics.However,most of the presently studied flexible sensors are only suitable for working at room temperature,and their applications at high or low temperatures are still a big challenge.In this work,we present a multimodal flexible sensor based on functional oxide La0.7Sr0.3MnO3(LSMO)thin film deposited on mica substrate.As a strain sensor,it shows excellent sensitivity to mechanical bending and high bending durability(up to 3600 cycles).Moreover,the LSMO/Mica sensor also shows a sensitive response to the magnetic field,implying its multimodal sensing ability.Most importantly,it can work in a wide temperature range from extreme low temperature down to 20K to high temperature up to 773 K.The flexible sensor based on the flexible LSMO/mica hetero-structure shows great potential applications for flexible electronics using at extreme temperature environment in the future.展开更多
The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We an...The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain, in the framework of the 6 × 6 k.p Hamiltonian for the valence states, to directly assess the interplay between the spin-orbit coupling and the strain-induced deformation potential for the interband momentum-matrix element. We numerically addressed problems of both the infinite and IQWs with piezoelectric fields to elucidate the effects of the piezoelectric potential and the deformation potential on the straindependent luminescence. The experimentally measured photoluminescence variation as a function of pressure can be qualitatively explained by the theoretical results.展开更多
The aim of this paper is to construct a podocin fluorescence expression vector and observe the effects of podocin transfection on CD2AP distribution in HEK293 cells.The pGEMT-easy vector containing the full-length cDN...The aim of this paper is to construct a podocin fluorescence expression vector and observe the effects of podocin transfection on CD2AP distribution in HEK293 cells.The pGEMT-easy vector containing the full-length cDNA encoding human podocin was cloned and digested with BamHI and XhoI.The digested full-length podocin was subcloned into pEGFP-C2.The constructed plas-mids were transfected into HEK293 cells and its effects on CD2AP distribution were observed by immunofluo-rescence.The pEGFP-NPHS2 expression vector was successfully constructed and podocin exclusively located on the HEK293 cell membrane.After podocin transfec-tion,CD2AP redistributed from the perinucleus to the cytoplasm in HEK293 cells.It can be concluded that podocin can recruit CD2AP to redistribute from the perinucleus to the cytoplasm in HEK293 cells.展开更多
Kidney disease is manifested in a wide variety of phenotypes,many of which have an important hereditary component.To delineate the genotypic and phenotypic spectrum of pediatric nephropathy,a multicenter registration ...Kidney disease is manifested in a wide variety of phenotypes,many of which have an important hereditary component.To delineate the genotypic and phenotypic spectrum of pediatric nephropathy,a multicenter registration system is being imple-mented based on the Chinese Children Genetic Kidney Disease Database(CCGKDD).In this study,all the patients with kidney and urological diseases were recruited from 2014 to 2020.Genetic analysis was conducted using exome sequencing for families with multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early-onset or extrarenal features.The genetic diagnosis was confirmed in 883 of 2256(39.1%)patients from 23 provinces in China.Phenotypic profiles showed that the primary diagnosis included steroid-resistant nephrotic syndrome(SRNS,23.5%),glomerulonephritis(GN,32.2%),congenital anomalies of the kidney and urinary tract(CAKUT,21.2%),cystic renal disease(3.9%),renal calcinosis/stone(3.6%),tubulopathy(9.7%),and chronic kidney disease of unknown etiology(CKDu,5.8%).The pathogenic variants of 105 monogenetic disorders were identified.Ten distinct genomic disorders were identified as pathogenic copy number variants(CNVs)in 11 patients.The diagnostic yield differed by subgroups,and was highest in those with cystic renal disease(66.3%),followed by tubulopathy(58.4%),GN(57.7%),CKDu(43.5%),SRNS(29.2%),renal calcinosis/stone(29.3%)and CAKUT(8.6%).Reverse phenotyping permitted correct identification in 40 cases with clinical reassessment and unexpected genetic conditions.We present the results of the largest cohort of children with kidney disease in China where diagnostic exome sequencing was performed.Our data demonstrate the utility of family-based exome sequencing,and indicate that the combined analysis of genotype and phenotype based on the national patient registry is pivotal to the genetic diagnosis of kidney disease.展开更多
Currently,most models for multiple fractured horizontal wells(MFHWs)in naturally fractured unconventional reservoirs(NFURs)are based on classical Euclidean models which implicitly assume a uniform distribution of natu...Currently,most models for multiple fractured horizontal wells(MFHWs)in naturally fractured unconventional reservoirs(NFURs)are based on classical Euclidean models which implicitly assume a uniform distribution of natural fractures and that all fractures are homogeneous.While fractal theory provides a powerful method to describe the disorder,heterogeneity,uncertainty and complexity of the NFURs.In this paper,a fractally fractional diffusion model(FFDM)for MFHWs in NFURs is established based on fractal theory and fractional calculus.Particularly,fractal theory is used to describe the heterogeneous,complex fracture network,with consideration of anomalous behavior of diffusion process in NFURs by employing fractional calculus.The Laplace transformation,line source function,dispersion method,and superposition principle are used to solve this new model.The pressure responses in the real time domain are obtained with Stehfest numerical inversion algorithms.The type curves of MFHW with three different outer boundaries are plotted.Sensitivity analysis of some related parameters are discussed as well.This new model provides the relatively more accurate and appropriate evaluation results for pressure transient analysis for MFHWs in NFURs,which could be applied to accurately interpret the real pressure data of an MFHW in field.展开更多
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Grant No.32201509)Hunan Science and Technology Xiaohe Talent Support Project(2022 TJ-XH 013)+6 种基金Science and Technology Innovation Program of Hunan Province(2022RC1156,2021RC2100)State Key Laboratory of Woody Oil Resource Utilization Common Key Technology Innovation for the Green Transformation of Woody Oil(XLKY202205)State Key Laboratory of Woody Oil Resource Utilization Project(2019XK2002)Key Research and Development Program of the State Forestry and Grassland Administration(GLM[2021]95)Hunan Forestry Outstanding Youth Project(XLK202108-1)Changsha Science and Technology Project(kq2202325,kq2107022)Science and Technology Innovation Leading Talent of Hunan Province(2020RC4026).
文摘The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.
文摘The effects of oil film on the rolled surface, including surface roughness and topography, were investigated during cold rolling of aluminum strips. Various mineral oils with viscosities from 0.10 to 1.6 Pa.s were used to obtain different oil film thicknesses. Results from experiment and calculation show that the thicker oil film protects the initial roughening surface so that it leads to an increase in roughness of the rolled surface, in particular when the surface roughness has the character of direction. The rolled surface roughness was determined by 2, which is the ratio of oil film thickness to the combined surface roughness. When 2 〉 3, the rolled surface roughness increases rapidly with the increase in oil viscosity, whereas the surface roughening has already occurred when 2 〈 3, but the increase of the rolled surface roughness with increasing viscosity is not distinct.
基金supported by grants from the National Natural Science Foundation of China(No.30872803 to Aihua Zhang,No.30772365 to Songming Huang)the Jiangsu Key Medical Talent Foundation(No.RC2007015 to Aihua Zhangthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China
文摘Objective: Monocytes/macrophages, proinflammatory cytokines and chemokines are important in the pathogenesis of glomerulonephritis. Interleukin (IL) -13 has been shown to exert potent anti-inflammatory properties. This study was designed to investigate the effect of IL-13 on the expression of proinflammatory cytokines, chemokines and profibrogenic cytokines and the involved molecular mechanism in cultured human mesangial cells (HMCs). Methods: The expressions of proinflammatory cytokines, chemokines and profibrogenic cytokines were determined by ribonuclease protection assay (RPA). Activity of nuclear factor-kappa B (NF-κB) and activa- tor protein-1 (AP-1) was examined by electrophoretic mobility shift assay (EMSA). NF-κB subunit p65 nuclear transportation and c-Jun N-terminal kinase (JNK) activity were assayed by immunoblot. Results: Recombinant IL-13 inhibited tumor necrosis factor-α (TNF-u), IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), IL-8, and transforming growth factor-β1 (TGF-β1) mRNA expressions in a dose-dependent manner. Lipopoly- sacchorides (LPS) dramatically increased NF-κB DNA binding activity of HMCs, which was inhibited by IL-13 in a dose-dependent manner. LPS-activated NF-κB contained p50 and p65 dimers, but not c-Rel subunit. IL-13 blocked LPS-induced NF-κB subunit p65. LPS stimulated JNK/AP-1 activation, which was inhibited by IL-13 in a dose-dependent manner. Conclusion: IL-13 inhibits proinflammatory cytokines, chemokines, and profibrogenic cytokines synthesis by blocking NF-κB and JNK/AP-1 activation. These observations point to the importance of IL-13 in the modulation of inflammatory processes in the renal glomerulus.
基金funded by Major Landmark Innovation Demonstration Project,2019XK2002Changsha Functional Oil Technology Innovation Center,KH2101007Hunan Forestry Bureau Outstanding Training Research Project,XLK202108-2.
文摘Tung oil(TO)/ultraviolet(UV)photo-composite curing material possesses the characteristics of low curing temperature,low material shrinkage and low environmental pollution.Accordingly,this material must be developed and utilized with the conjugated double bonds contained in the long chain of the main structure(α-tung acid)molecules in the refined TO.The aforementioned material can be chemically modified using a variety of chemical methods to develop a new TO-based UV photocurable material due to its unique chemical properties.This work reviews the research progress of TO/UV photo-composite curing materials in recent years.Firstly,the chemical structure and application of TO and UV Photocatalysis Technology were briefly introduced.Secondly,the research status of novel TO/UV photo-composite curing materials developed by the Diels-Alder reaction was discussed.The method and curing effect of the UVcuring system constructed by other chemically modified TO were also discussed.Thereafter,the application of TO in industrial production is introduced from four directions:the application of TO in biodiesel,the application in synthetic resin,the application in self-healing coating and microcapsules and other applications.Finally,the research and application prospects of TO/UV photo-composite curing materials were presented.
基金Supported by: a grant from Military High-Technological Key Project, No. 2002 (Health Medicine) 18-16
文摘BACKGROUND: Dopamine receptors are divided into D1 and D2 subgroups. It has been reported that D2 receptors resist neural toxicity induced by excitatory amino acids and muscarine, and also alleviate epilepsy attacks following pilocarpine treatment. However, it has not yet been established whether D2 receptors regulate temporal epilepsy. OBJECTIVE: To observe the effects of the D2 antagonist haloperidol on hippocampal neuronal apoptosis and electrical brain activity in a rat model of kainic acid-induced temporal epilepsy. DESIGN, TIME AND SETTING: Randomized grouping and histopathological study were performed at the Neurology Medicine Institute of Zhujiang Hospital, Southern Medical University from August to December 2004. MATERIALS: Twenty-five adult, male, Sprague Dawley rats were selected for the present study. Kainic acid (Sigma, USA) was injected into the right lateral ventricle to establish models of temporal epilepsy. A PowerLah multiplying channel eleetrophysiolograph was provided by AD Instruments, Australia. METHODS: The rats were randomly divided into 5 groups (n = 5): control, model, haloperidol hippocampus, haloperidol striatum, and haloperidol substantia nigra. Temporal epilepsy was established in all rats except the control group. Haloperidol was slowly injected into the hippocampus, striatum and substantia nigra, respectively, in three different injection groups. Normal saline was injected into the right lateral ventricle of the control rats. MAIN OUTCOME MEASURES: Hippocampal apoptosis was observed on the day 3 of treatment using TUNEL staining. Changes in electroencephalogram at 0, 0.5, 2, 6, and 12 hours following treatment onset were observed using a PowerLab multiplying channel electrophysiolograph. Animal behaviors were classified according to the Racine criteria. RESULTS: Twenty-five rats were included in the final analysis. Seizures did not occur in the control group. In the model group, 10 minutes after kainic acid injection to the lateral cerebral ventricle, epilepsy seizures occurred and reached a peak within one hour. Hippocampal neuronal apoptosis occurred following epilepsy, in particular on day 3. Following haloperidol injection, hippocampal neuronal apoptosis increased, in particular in the haloperidol hippocampus group, and was significantly greater than the model group (P 〈 0.05). CONCLUSION: Results suggested that D2 receptors inhibited temporal epilepsy. The hippocampal D2 receptors exhibited the strongest influence on temporal epilepsy in the hippocampus, followed by the suhstantia nigra and the striatum.
文摘Objective The aim of this study was to investigate tumor volume changes with kilovoltage cone-beam computed tomography (kV-CBCT) and their dosimetric consequences for non-operative lung cancer during intensity-modulated radiotherapy (IMRT) or fractionated stereotactic radiotherapy. Methods Eighteen patients with non-operative lung cancer who received IMRT consisting of 1.8-2.2 Gy/fraction and five fractions per week or stereotactic radiotherapy with 5-8 Gy/fraction and three fractions a week were studied, kV-CBCT was performed once per week during IMRT and at every fraction during stereotactic radiotherapy. The gross tumor volume (GTV) was contoured on the kV-CBCT images, and adaptive treatment plans were created using merged kV-CBCT and primary planning computed tomogra- phy image sets. Tumor volume changes and dosimetric parameters, including the minimum dose to 95% (D95) or 1% (D1) of the planning target volume (PTV), mean lung dose (MLD), and volume of lung tissue that received more than 5 (Vs), 10 (Vl0), 20 (V20), and 30 (V30) Gy were retrospectively analyzed. Results The average maximum change in GTV observed during IMRT or fractionated stereotactic radio- therapy was -25.85% (range, -13.09% --56.76%). The D95 and Dr of PTV for the adaptive treatment plans in all patients were not significantly different from those for the initial or former adaptive treatment plans. In patients with tumor volume changes of 〉20% in the third or fourth week of treatment during IMRT, adap- tive treatment plans offered clinically meaningful decreases in MLD and V5, V10, V20, and V30; however, in patients with tumor volume changes of 〈 20% in the third or fourth week of treatment as well as in patients with stereotactic radiotherapy, there were no significant or clinically meaningful decreases in the dosimetric parameters. Conclusion Adaptive treatment planning for decreasing tumor volume during IMRT may be beneficial for patients who experience tumor volume changes of 〉20% in the third or fourth week of treatment.
基金Supported by Reform Transformation Project of Guizhou Province(QKHT Z[2013]4006)Science and Technology Planning Project of Guizhou Province(QKHN G[2014]4002,QKH NY[2014]3063)
文摘In Guizhou Province, the area of rocky desertification land is 3.023 8 million hm^2, accounting for 17.16% of total area of land in the province. Rocky desertification is the most important ecological problem that restricts the economic and social development in Guizhou, so the primary task of ecological construction in Guizhou Province is to curb rocky desertification. How to effectively, efficiently and persistently use rocky desertification land is not only the key to the improvement of ecological environment, but also an urgent problem solved for local people's survival and anti-poverty. Due to having developed roots, growing fast, high yield of grass, strong resistance to drought, and high regeneration capacity, Pennisetum sinese Roxb has become a new method to control rocky desertification. How to use P. sinese Roxb efficiently becomes the key to the ecological control of rocky desertification by P. sinese Roxb. In this study, the ecological agriculture development model of "P. sinese Roxb-rocky desertification control-edible mushrooms" was studied, and the effect of cultivating Pleurotus eryngii with P. sinese Roxb in rocky desertification land was analyzed. Moreover, an outlook for the application of P. sinese Roxb in rocky desertification areas of Guizhou was given.
基金Supported by Class A Project of Scientific Research Development Program of Colleges and Universities in Shandong Province (J17KA155)。
文摘The diseases of sweet cherry caused by viruses and viroids have occurred in the main cherry producing areas of China and are increasing year by year, which has become an important factor affecting the yield and quality of sweet cherry. For this reason, this paper elaborated the prevention and countermeasures of virus diseases from six aspects, including soil treatment, cultivation of disease-free seedlings, prevention of disease and pest damage, reasonable pruning, water management, and treatment of virus diseases, in order to provide technical guidance for the disease resistance, high quality and high yield of facility cherry, as well as information reference for the further improvement of the technical system of virus disease prevention and cultivation of facility cherry.
基金This work was supported by grants from the National Key Research and Development Program of China(No.2018YFC1706103)Key Program of National Natural Science Foundation of China(Nos.81830110,8181101160,81430093,81673586,81703685,81302-905,81503386,and 81373930)+4 种基金National Key Subject of Drug Innovation(Nos.2015ZX09101043-005 and 2015ZX09101043-011)TCM State Administration Subject of Public Welfare of(No.2015468004)Major Projects of Application Technology Research and Development Plan in Heilongjiang Province(No.GX16C003)TCM State Administration Subject of Public Welfare(No.2015468004),Young Talent Lift Engineering Project of China Association of Traditional Chinese Medicine(No.QNRC2-B06)Outstanding Talents Foundation of Heilongjiang University of Chinese Medicine(No.2018jc01).
文摘Sijunzi decoction (SJZD) is a Chinese classical formula to treat spleen qi deficiency syndrome (SQDS) and has been widely used for thousands of years.However,the quality control (QC) standards of SJZD are insufficient.Chinmedomics has been designed to discover and verify bioactive compounds of a variety of formularapidly.In this study,we used Chinmedomics to evaluate the SJZD's efficacy against SQDS to discover the potential quality-markers (q-markers) for QC.A total of 56 compounds in SJZD were characterized in vitro,and 23 compounds were discovered in vivo.A total of 58 biomarkers were related to SQDS,and SJZD can adjust a large proportion of marker metabolites to normal level and then regulate the metabolic profile to the health status.A total of 10 constituents were absorbed as effective ingredients that were associated with overall efficacy.We preliminarily determined malonyl-ginsenoside Rb2 and ginsenoside Ro as the q-markers of ginseng;dehydrotumulosic acid and dihydroxy lanostene-triene-21-acid as the q-markers of poria;glycyrrhizic acid,isoglabrolide,and glycyrrhetnic acid as the q-markers of licorice;and 2-atractylenolide as the q-marker of macrocephala.According to the discovery of the SJZD q-markers,we can establish the quality standard that is related to efficacy.
基金This work was supported by the "Thousands Talents" Program for Pioneer Team, China, and Researcher and his Innovation the National Natural Science Foundation of China (No. 51432005)
文摘Recent experiments have demonstrated that nanogenerators fabricated using two-dimensional MoS2 flakes may find potential applications in electromechanical sensing, wearable technology, pervasive computing, and implanted devices. In the present study, we theoretically examined the effect of the number of atomic layers in MoS2 flakes on the nanogenerator output. Under a square-wave applied strain, MoS2 flakes with an even number of atomic layers did not exhibit a piezoelectric output, owing to the presence of a projected inversion symmetry. On the other hand, for MoS2 flakes with an odd number of layers, owing to the lack of inversion symmetry, piezoelectric output voltage and current were generated, and decreased with the increase of the number of layers. Furthermore, as MoS2 flakes were only a few atoms thick, the capacitance of the MoS2 nanogenerators was at least an order of magnitude smaller than that of the nanowire- and nanofilm-based nanogenerators, enabling the use of MoS2 nano- generators in high-frequency applications. Our results explain the experimental observations and provide guidance on optimizing and designing two-dimensional nanogenerators.
基金the generous support from the Program of Natural Science Foundation of State(Grant No.81973745,82104733,81302905)Talent Lift Engineering Project of China Association of TCM(QNRC2-B06)Natural Science Foundation of Heilongjiang Province(YQ2019H030)。
文摘Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is wellrecognizedhallmarks of diseases. Metabolite signatures that have close proximity to subject’s phenotypic informative dimension,are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers couldlead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity andselectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolicbiomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeuticpotentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathwayschanges as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists haveestablished a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutictarget exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-moleculecandidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening andtreatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
基金This work was supported by grants from the National Key Research and Development Program of China(No.2018YFC1706103)Key Program of National Natural Science Foundation of China(Nos.81830110,8181101160,81430093,81673586,81703685,81302905,81503386,and 81373930)+5 种基金National Key Subject of Drug Innovation(Nos.2015ZX09101043-005 and 2015ZX-09101043-011)TCM State Administration Subject of Public Welfare(No.2015468004)Major Projects of Application Technology Research and Development Plan in Heilongjiang Province(No.GX16C003)Young Talent Lift Engineering Project of China Association of Traditional Chinese Medicine(No.QNRC2-B06)Natural Science Foundation of Heilongjiang Province(Nos.YQ2019H030 and H2016056)Foundation of Heilongjiang University of Chinese Medicine(Nos.2018jc01,2018bs02,and 201809).
文摘High-throughput metabolomics can clarify the underlying molecular mechanism of diseases via the qualitative and quantitative analysis of metabolites.This study used the established Yang Huang syndrome(YHS)mouse model to evaluate the efficacy of geniposide(GEN).Urine metabolic data were quantified by ultraperformance liquid chromatography-tandem mass spectrometry.The non-target screening of the massive biological information dataset was performed,and a total of 33 metabolites,including tyramine glucuronide,aurine,and L-cysteine,were identified relating to YHS.These differential metabolites directly participated in the disturbance of phase I reaction and hydrophilic transformation of bilirubin.Interestingly,they were completely reversed by GEN.While,as the auxiliary technical means,we also focused on the molecular prediction and docking results in network pharmacological and integrated analysis part.We used integrated analysis to communicate the multiple results of metabolomics and network pharmacology.This study is the first to report that GEN indirectly regulates the metabolite“tyramine glucuronide”through its direct effect on the target heme oxygenase 1 in vivo.Meanwhile,heme oxygenase-1,a prediction of network pharmacology,was the confirmed metabolic enzyme of phase I reaction in hepatocytes.Our study indicated that the combination of high-throughput metabolomics and network pharmacology is a robust combination for deciphering the pathogenesis of the traditional Chinese medicine(TCM)syndrome.
基金This work was successively financed by the Jiangsu Innovation Center of Marine Bioresources(China)(No.822153216).
文摘Enhanced phosphorus treatment and recovery has been continuously pursued due to the stringent wastewater discharge regulations and a phosphate supply shortage. Here, a new adsorption-membrane separation strategy was developed for rational reutilization of phosphate from sea cucumber aquaculture wastewater using a Zr-modified-bentonite filled polyvinyl chloride membrane. The as-obtained polyvinyl chloride/Zr-modified-bentonite membrane was highly permeability (940 L/(m2·h)), 1–2 times higher than those reported in other studies, and its adsorption capacity was high (20.6 mg/g) when the phosphate concentration in water was low (5 mg/L). It remained stable under various conditions, such as different pH, initial phosphate concentrations, and the presence of different ions after 24 h of adsorption in a cross-flow filtration system. The total phosphorus and phosphate removal rate reached 91.5% and 95.9%, respectively, after the membrane was used to treat sea cucumber aquaculture wastewater for 24 h and no other water quality parameters had been changed. After the purification process, the utilization of the membrane as a new source of phosphorus in the phosphorus-free f/2 medium experiments indicated the high cultivability of economic microalgae Phaeodactylum tricornutum FACHB-863 and 1.2 times more chlorophyll a was present than in f/2 medium. The biomass and lipid content of the microalgae in the two different media were similar. The innovative polyvinyl chloride/Zr-modified-bentonite membrane used for phosphorus removal and recovery is an important instrument to establish the groundwork for both the treatment of low concentration phosphate from wastewater as well as the reuse of enriched phosphorus in required fields.
基金This work was supported by the "thousands talents" program for pioneer researcher and his innovation team, China, the National Natural Science Foundation of China (No. 51432005), and Beijing Municipal Commission of Science and Technology (Nos. Z131100006013005 and Z131100006013004).
文摘Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as the piezotronic effect. For devices whose dimension is much smaller than the mean free path of carriers (such as a single atomic layer of MoS2), ballistic transport occurs. In this study, transport in the monolayer MoS2 piezotronic transistor is studied by presenting analytical solutions for two-dimensional (2D) MoS2. Furthermore, a numerical simulation for guiding future 2D piezotronic nanodevice design is presented.
基金This work was supported financially by the National Natural Science Foundation of China(No.51872099)the Project for Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2016),the Guangdong Innovative Research Team Program(No.2013C102)+1 种基金the Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(No.2017B030301007)Science and Technology Program of Guangzhou(No.2019050001).
文摘Flexible sensors have been widely investigated due to their broad application prospects in various flexible electronics.However,most of the presently studied flexible sensors are only suitable for working at room temperature,and their applications at high or low temperatures are still a big challenge.In this work,we present a multimodal flexible sensor based on functional oxide La0.7Sr0.3MnO3(LSMO)thin film deposited on mica substrate.As a strain sensor,it shows excellent sensitivity to mechanical bending and high bending durability(up to 3600 cycles).Moreover,the LSMO/Mica sensor also shows a sensitive response to the magnetic field,implying its multimodal sensing ability.Most importantly,it can work in a wide temperature range from extreme low temperature down to 20K to high temperature up to 773 K.The flexible sensor based on the flexible LSMO/mica hetero-structure shows great potential applications for flexible electronics using at extreme temperature environment in the future.
基金Acknowledgements This work was supported by National Natural Science Foundation of China (Nos. 51472056 and 51402064), the "thousands talents" program for pioneer researcher and his innovation team, China, the Recruitment Program of Global Youth Experts, China and Youth Innovation Promotion Assodation of Chinese Academy of Sciences (No. 2015387). M. W. acknowledges financial support from the Chinese Academy of Sciences and the Beijing Institute for Nanoenergy and Nanosystems.
文摘The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain, in the framework of the 6 × 6 k.p Hamiltonian for the valence states, to directly assess the interplay between the spin-orbit coupling and the strain-induced deformation potential for the interband momentum-matrix element. We numerically addressed problems of both the infinite and IQWs with piezoelectric fields to elucidate the effects of the piezoelectric potential and the deformation potential on the straindependent luminescence. The experimentally measured photoluminescence variation as a function of pressure can be qualitatively explained by the theoretical results.
基金The study was supported by the National Natural Science Foundation of China(Grant No.30100081).
文摘The aim of this paper is to construct a podocin fluorescence expression vector and observe the effects of podocin transfection on CD2AP distribution in HEK293 cells.The pGEMT-easy vector containing the full-length cDNA encoding human podocin was cloned and digested with BamHI and XhoI.The digested full-length podocin was subcloned into pEGFP-C2.The constructed plas-mids were transfected into HEK293 cells and its effects on CD2AP distribution were observed by immunofluo-rescence.The pEGFP-NPHS2 expression vector was successfully constructed and podocin exclusively located on the HEK293 cell membrane.After podocin transfec-tion,CD2AP redistributed from the perinucleus to the cytoplasm in HEK293 cells.It can be concluded that podocin can recruit CD2AP to redistribute from the perinucleus to the cytoplasm in HEK293 cells.
基金J.R.is supported by National Natural Science Foundation of China(NSFC-8182207)Shanghai Academic/Technology Research Leader(19XD1420600)Chinese Academy of Medical Sciences(2019-RC-HL_020).
文摘Kidney disease is manifested in a wide variety of phenotypes,many of which have an important hereditary component.To delineate the genotypic and phenotypic spectrum of pediatric nephropathy,a multicenter registration system is being imple-mented based on the Chinese Children Genetic Kidney Disease Database(CCGKDD).In this study,all the patients with kidney and urological diseases were recruited from 2014 to 2020.Genetic analysis was conducted using exome sequencing for families with multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early-onset or extrarenal features.The genetic diagnosis was confirmed in 883 of 2256(39.1%)patients from 23 provinces in China.Phenotypic profiles showed that the primary diagnosis included steroid-resistant nephrotic syndrome(SRNS,23.5%),glomerulonephritis(GN,32.2%),congenital anomalies of the kidney and urinary tract(CAKUT,21.2%),cystic renal disease(3.9%),renal calcinosis/stone(3.6%),tubulopathy(9.7%),and chronic kidney disease of unknown etiology(CKDu,5.8%).The pathogenic variants of 105 monogenetic disorders were identified.Ten distinct genomic disorders were identified as pathogenic copy number variants(CNVs)in 11 patients.The diagnostic yield differed by subgroups,and was highest in those with cystic renal disease(66.3%),followed by tubulopathy(58.4%),GN(57.7%),CKDu(43.5%),SRNS(29.2%),renal calcinosis/stone(29.3%)and CAKUT(8.6%).Reverse phenotyping permitted correct identification in 40 cases with clinical reassessment and unexpected genetic conditions.We present the results of the largest cohort of children with kidney disease in China where diagnostic exome sequencing was performed.Our data demonstrate the utility of family-based exome sequencing,and indicate that the combined analysis of genotype and phenotype based on the national patient registry is pivotal to the genetic diagnosis of kidney disease.
基金The authors would like to acknowledge the financial support provided by the China Joint Foundation for Petrochemical Industry(A)(No.U1562102).
文摘Currently,most models for multiple fractured horizontal wells(MFHWs)in naturally fractured unconventional reservoirs(NFURs)are based on classical Euclidean models which implicitly assume a uniform distribution of natural fractures and that all fractures are homogeneous.While fractal theory provides a powerful method to describe the disorder,heterogeneity,uncertainty and complexity of the NFURs.In this paper,a fractally fractional diffusion model(FFDM)for MFHWs in NFURs is established based on fractal theory and fractional calculus.Particularly,fractal theory is used to describe the heterogeneous,complex fracture network,with consideration of anomalous behavior of diffusion process in NFURs by employing fractional calculus.The Laplace transformation,line source function,dispersion method,and superposition principle are used to solve this new model.The pressure responses in the real time domain are obtained with Stehfest numerical inversion algorithms.The type curves of MFHW with three different outer boundaries are plotted.Sensitivity analysis of some related parameters are discussed as well.This new model provides the relatively more accurate and appropriate evaluation results for pressure transient analysis for MFHWs in NFURs,which could be applied to accurately interpret the real pressure data of an MFHW in field.