Heavy metals disposed through anthropogenic activities find their way into aquatic environment through factory effluents. These heavy metals resuspend back into the water column along with the sediments and are known ...Heavy metals disposed through anthropogenic activities find their way into aquatic environment through factory effluents. These heavy metals resuspend back into the water column along with the sediments and are known to affect aquatic bioresources. Effluent water samples and crabs were collected along top camp stream to evaluate heavy metal concentrations and were assessed to determine the uptake of heavy metals in crabs. Results show fluctuation in acidity/alkalinity of water samples. BOD, COD, DO, conductivity and organic phosphorous were below permissible limit, and metal concentrations (As, Cu, Cr and Zn) in water samples do not constitute a risk factor for human health. However, concentrations of Cupper (Cu), Iron (Fe), Asenate (As) and Manganese (Mn) in crabs were significantly higher than the level found in the effluent water. Heavy metal poisoning has been identified among people that depend on crabs for their protein. Such effects are viewed by international health organization as attenuation of human health. The toxic elements (As, Cu, Fe and Mn) in the effluent and dissolved solid concentrations including potassium and calcium carbonate may be reduced through resource recovery.展开更多
To investigate the oxidative stress-inducing potential of non-thermal electromagnetic fields in rats. Male Wister rats were exposed to electrical field intensity of 2.3 ± 0.82 μV/m . Exposure was in three forms:...To investigate the oxidative stress-inducing potential of non-thermal electromagnetic fields in rats. Male Wister rats were exposed to electrical field intensity of 2.3 ± 0.82 μV/m . Exposure was in three forms: continuous waves, or modulated at 900 MHz or modulated GSM-nonDTX. The radio frequency radiation (RFR) was 1800 MHz, specific absorption radiation (SAR) (0.95-3.9 W/kg) for 40 and/or 60 days continuously. Control animals were located > 300 m from base station, while sham control animals were located in a similar environmental conditions, but in the vicinity of a non-functional base station. The rats were assessed for thiobarbituric and reactive species (TBARS), reduced glutathione (GSH) content, catalase activity, glutathione reductase (GR) and glucose residue after 40 and 60 days of exposure. At 40 days, electromagnetic radiation failed to induce any significant alterations. However, at 60 days of exposure various attributes evaluated decreased. The respective decreases in both nicotinamide adenine dinucleotide phosphate (NADPH) and Ascorbate- linked lipid peroxidation (LPO) with concomitant diminution in enzymatic antioxidative defense systems resulted in decreased glucose residue. The present studies showed some biochemical changes that may be associated with a prolong exposure to electromagnetic fields and its relationship to the activity of antioxidant system in rat Regular assessment and early detection of antioxidative defense system among people working around the base stations are recommended.展开更多
文摘Heavy metals disposed through anthropogenic activities find their way into aquatic environment through factory effluents. These heavy metals resuspend back into the water column along with the sediments and are known to affect aquatic bioresources. Effluent water samples and crabs were collected along top camp stream to evaluate heavy metal concentrations and were assessed to determine the uptake of heavy metals in crabs. Results show fluctuation in acidity/alkalinity of water samples. BOD, COD, DO, conductivity and organic phosphorous were below permissible limit, and metal concentrations (As, Cu, Cr and Zn) in water samples do not constitute a risk factor for human health. However, concentrations of Cupper (Cu), Iron (Fe), Asenate (As) and Manganese (Mn) in crabs were significantly higher than the level found in the effluent water. Heavy metal poisoning has been identified among people that depend on crabs for their protein. Such effects are viewed by international health organization as attenuation of human health. The toxic elements (As, Cu, Fe and Mn) in the effluent and dissolved solid concentrations including potassium and calcium carbonate may be reduced through resource recovery.
文摘To investigate the oxidative stress-inducing potential of non-thermal electromagnetic fields in rats. Male Wister rats were exposed to electrical field intensity of 2.3 ± 0.82 μV/m . Exposure was in three forms: continuous waves, or modulated at 900 MHz or modulated GSM-nonDTX. The radio frequency radiation (RFR) was 1800 MHz, specific absorption radiation (SAR) (0.95-3.9 W/kg) for 40 and/or 60 days continuously. Control animals were located > 300 m from base station, while sham control animals were located in a similar environmental conditions, but in the vicinity of a non-functional base station. The rats were assessed for thiobarbituric and reactive species (TBARS), reduced glutathione (GSH) content, catalase activity, glutathione reductase (GR) and glucose residue after 40 and 60 days of exposure. At 40 days, electromagnetic radiation failed to induce any significant alterations. However, at 60 days of exposure various attributes evaluated decreased. The respective decreases in both nicotinamide adenine dinucleotide phosphate (NADPH) and Ascorbate- linked lipid peroxidation (LPO) with concomitant diminution in enzymatic antioxidative defense systems resulted in decreased glucose residue. The present studies showed some biochemical changes that may be associated with a prolong exposure to electromagnetic fields and its relationship to the activity of antioxidant system in rat Regular assessment and early detection of antioxidative defense system among people working around the base stations are recommended.