This study focuses on the preparation of corncob-based biosorbents. The chemical impregnation method was used to vary the chemical agent namely phosphoric acid H3PO4 (BA) and sodium hydroxide NaOH (BB). The physicoche...This study focuses on the preparation of corncob-based biosorbents. The chemical impregnation method was used to vary the chemical agent namely phosphoric acid H3PO4 (BA) and sodium hydroxide NaOH (BB). The physicochemical analysis of the two biosorbents indicated that under the same preparation conditions, the bio-sorbents have after activation yields lower than 50% (24.37% for BB and 49.09% for BA). In addition, the biosorbents have iodine index values between 444.17 mg/g and 418.79 mg/g and specific surfaces related to the adsorption of methylene blue ranging from 18.54 m2/g to 19.70 m2/g. The study of surface functional groups by using the Boehm test and pH zero point charge (pHPZC) confirmed the acidic nature of BA and BB biosorbents with respective values pHPZC = 4.01 and pHPZC = 4.90. The Langmuir method and BET analysis determined the specific surface areas by liquid phase adsorption of methylene blue as well as the porosity. The BET surface areas of BA and BB obtained are 72.01 m2/g and 63.10 m2/g respectively. The influence of the chemical activating agent on the formation of pores was confirmed by electron microscopy (SEM) analysis. From this study, it is found that the best activating agent for corn cobs was found to be phosphoric acid because the BA biosorbent was revealed to be the most favourable due to its surface area and good pore volume which are high compared to sodium hydroxide NaOH. Moreover, their application as adsorbent for effluent treatment could be explored.展开更多
The availability of groundwater of acceptable quality has become a difficult challenge to meet in many countries, particularly Côte d’Ivoire. The State of Côte d’Ivoire and rural populations are building h...The availability of groundwater of acceptable quality has become a difficult challenge to meet in many countries, particularly Côte d’Ivoire. The State of Côte d’Ivoire and rural populations are building hydraulic infrastructure for this purpose. However, the quality of water coming from these infrastructures remains to be determined. This study therefore aims to analyze certain physicochemical parameters of the groundwater of Gloazra, Kouezra and Trahonfla. These are temperature, pH, electrical conductivity, TDS, salinity level, hardness, alkalinity, chloride content and bicarbonate. To determine the pH, electrical conductivity, temperature, TDS, and salinity rate, an electrochemical analysis was carried out. The titrimetric analysis made it possible to determine the chloride and bicarbonate content, alkalinity, and hardness. The results indicate that the studied groundwater is soft and acidic with good mineralization. This water does not present a health hazard to consumers but can affect hydraulic equipment and household containers.展开更多
The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected fr...The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected from the Bandama, Comoé, and Bia Rivers in south and south eastern Côte d’Ivoire (West Africa), were analyzed for total metal concentrations and chemical speciation. The results showed that the river sediments were considerably contaminated by Cd and moderately contaminated by As, Cu, Pb, and Zn. Significant spatial variations were observed among the stations but not between the rivers. Metals Cd and Cu were likely to cause more ecological risks. The speciation analysis unravelled that the metal(loid)s partitioned mainly in the residual fraction, with the potential mobile fraction varying from 14% to 28%. The study calls for establishment of strict policies relative to the application of fertilizers and agrochemicals and mining activities to protect the environment and human health risks.展开更多
The concentrations of cadmium, copper, lead and zinc in sediment samples from the Vridi Canal (Harbour area of economic capital of Cote d’Ivoire) were determined to evaluate the level of contamination. All metal conc...The concentrations of cadmium, copper, lead and zinc in sediment samples from the Vridi Canal (Harbour area of economic capital of Cote d’Ivoire) were determined to evaluate the level of contamination. All metal concentrations in sediment samples, except Cu, were greater than the concentration of Upper Continental Crust (UCC). Sediment pollution assessment was undertaken by using Enrichment Factor (EF), geoaccumulation index (I<sub>geo</sub>) and Pollution Load Index (PLI). The enrichment factor (Cd: EF = 20.04;Pb: EF = 3.43;Zn: EF = 1.56) and géoaccumulation index (Cd: I<sub>geo</sub> = 4.29;Pb: I<sub>geo</sub> = 1.81) showed that the sediments were polluted. The Pollution Load Index (PLI > 1) indicated that the sediments of the studied area were heavily contaminated. Based on the comparison with sediment quality guidelines, the concentrations of cadmium, lead and zinc would be toxic to one or more species of aquatic organisms living in the sediments.展开更多
Polycyclic aromatic hydrocarbons (PAHs) are strongly associated with agricultural, residential, transportation, industrial and petroleum activities. In this study, the presence of PAHs (polycyclic aromatic hydrocarbon...Polycyclic aromatic hydrocarbons (PAHs) are strongly associated with agricultural, residential, transportation, industrial and petroleum activities. In this study, the presence of PAHs (polycyclic aromatic hydrocarbons) was investigated in sediments of the ivory coastal zone (Toukouzou Hozalem-Assinie). The main objectives of this study were to determine the abundance and to predict the source of PAHs in the sediments. Gas chromatography-mass spectrometry (GC-MS) was used to analyze sixteen priority PAHs. Total PAHs concentrations were from 1.31 to 3992.68 mg/kg in sediment with an average concentration of (307.54 ± 16.10) mg/kg. Among all PAHs, Naphthalene (Nap = 332.72 mg/kg) and Phenanthrene (Phe = 41.75 mg/kg) were found in the highest concentration, whereas Benzo (k) Fluoranthene was found in the least concentration in the range of 0 - 0.85 mg/kg (mean 0.24 mg/kg). Bassam-Modeste Lagune (BML) sampling site was the site with the highest concentration of total PAHs (all 16 PAHs) compared to the others due to their location in a highly populated estuary area that receives commercial, tourism, port, petroleum and heavy industrial activities. Diagnostic ratios were used to determine the sources of PAHs and suggested that the PAH profile in the sediments was dominated by 2 and 3 ring PAHs. The patterns of PAH compounds in sediment indicated that contamination is from mixed sources, with a strong indication of petrogenic contamination potentially from spills of fuel, oil and industrial activities.展开更多
In this work, low cost coconut biochar based activated carbon (CBAC) was used for adsorption of Butylparaben (BPB) from aqueous medium. The prepared CBAC was characterized using BET, Boehm analysis and the adsorption ...In this work, low cost coconut biochar based activated carbon (CBAC) was used for adsorption of Butylparaben (BPB) from aqueous medium. The prepared CBAC was characterized using BET, Boehm analysis and the adsorption equilibrium, kinetics and thermodynamics studies of BPB adsorption were carried out. During batch adsorption runs, the effects of factors, such as contact time (0 - 300 min), CBAC dose (200 - 800 mg), pH (3 - 11) and solution temperatures (303 - 348 K) were investigated on BPB removal. Experimental results reveal that the BPB removal efficiency on CBAC is higher than 97% under acidic and neutral conditions. Equilibrium data were fitted by Langmuir, Freundlich and Temkin isotherm models with correlation coefficient more than 0.9. The pseudo-second order kinetic model was observed to fit well the adsorption data. Thermodynamic analysis shows positive values of standard Gibb’s free energy, suggesting the non-spontaneity of the process. The changes in enthalpy (0.2 J.mol-1) and entropy (19 J.mol-1) were found to be endothermic with an increase of randomness. The high adsorption efficiency of the synthesized coconut biochar materials with low cost indicates that it may be a promising adsorbent for removing organic compounds.展开更多
Iodization of dietary salt is recommended to prevent and control iodine deficiency disorders. The kinetic study of dietary iodized salt proves to be of interest not only for the determination of the conditions of prod...Iodization of dietary salt is recommended to prevent and control iodine deficiency disorders. The kinetic study of dietary iodized salt proves to be of interest not only for the determination of the conditions of production of iodine, but also for a good knowledge of the kinetic and thermodynamic parameters of the reaction. In this work, two salt brands were studied and one of them was used for the kinetic study. The kinetic study showed that the reaction proceeded slowly at a medium rate. Since the reaction admits a global order equal to 1, potassium iodide has no influence on this reaction rate. The concentration of iodate ions introduced in the dietary salt is a kinetic parameter that affects the reaction rate. Calculated rate constant was inversely proportional to time. The study has therefore determined experimentally kinetic parameters of the reaction between iodate and iodide ions.展开更多
Researches have been undertaken to find a form of valorization of the surplus production of vegetable oils in Côte d’Ivoire for their use as a substitute diesel. The first tests of the use of crude oils-diese...Researches have been undertaken to find a form of valorization of the surplus production of vegetable oils in Côte d’Ivoire for their use as a substitute diesel. The first tests of the use of crude oils-diesel blends by the company Palmindustrie faced enormous difficulties. We have therefore undertaken a campaign of pyrolysis of Tropical Straight Vegetable Oils: palm, copra, peanut, cotton, cabbage palm and shea, between 400°C and 600°C under atmospheric pressure. A silica support was used in co-catalysis either with water or with methylcyclohexane, which is a model compound of cetanes contained in gas oil. This compound has the advantage, unlike the gas oil itself, of not masking the peaks of the pyrolysis recombinates of oils in the chromatograms. The condensed organic phase consists mainly of hydrocarbons including paraffins, olefins, alkylbenzenes and styrenes. The yields of liquid hydrocarbons vary between 72% and 86%. A comparative study of coke precursors and gas production was carried out. A discussion on the parameters to be considered for a large-scale implementation was undertaken.展开更多
Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SE...Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SEM analyses revealed that the surface of the film did not exhibit cracks in the presence of TTIP as a binder in the TiO2 P25 suspension. The following parameters were studied in continuous mode operation: the flow rate in the reactor, the initial concentration of the paraquat, the pH of the solution, the weight of photocatalytic material with the number of foams in the reactor and the weight of the catalyst deposited onto the support. The results showed that by working under optimal operating conditions at natural pH (pH = 6.7), low paraquat (Co = 10 ppm), and flow (26 mL/min), we recorded approximately (43.16 ± 1.00)% oxidation of paraquat and a decrease in total organic carbon (TOC) of (27.13 ± 1.00)% after about 70 minutes. The apparent rate constant is in the order of (0.0656 ± 0.0010) min-1. In addition, by increasing the amount of β-SiC foams coated with TiO2, we improve the degradation of paraquat in the same order. The study of aging of the material showed its stability over time. However, photocatalytic activity was limited after 20 minutes of UV irradiation due to the limitation of the diffusion of the paraquat molecules towards the surface of the photocatalyst. As an outcome, we obtained an efficient TiO2/β-SiC material for photocatalytic degradation of organic compounds in water.展开更多
In most developing countries, particularly in the countries of sub-Saharan Africa, corn cobs are considered as waste polluting the environment during the harvest period of this cereal. In order to valorize this agricu...In most developing countries, particularly in the countries of sub-Saharan Africa, corn cobs are considered as waste polluting the environment during the harvest period of this cereal. In order to valorize this agricultural waste, high-performance, inexpensive and low-energy consumption magnetic bioadsorbents were prepared from corn cobs. The chemically activated raw corn cob was magnetized by coating the surface with magnetite nanoparticles. The prepared biosorbents were characterized by FT-IR, XRD, FE-SEM associated with EDX, HR-TEM, TG analysis, BET surface area analysis and XPS. The maximum specific surface area of 35.22 m<sup>2</sup>/g was reached. An attempt to use of these magnetic biosorbents for the removal of heavy metal like Cr(VI) from aqueous solution was envisaged.展开更多
Cefixime, a third-generation semi-synthetic cephalosporin antibiotic was used as a copper corrosion inhibitor in 1M HNO<sub>3</sub> solution. The study was conducted through the weight loss technique at 29...Cefixime, a third-generation semi-synthetic cephalosporin antibiotic was used as a copper corrosion inhibitor in 1M HNO<sub>3</sub> solution. The study was conducted through the weight loss technique at 298 - 318 K and theoretical studies based on quantum chemistry. The studied drug inhibited the corrosion of copper in 1M HNO<sub>3</sub> over the cefixime concentration range (0.02 - 2 mM). The inhibition efficiency increased with an increase in the inhibitor concentration to reach 91.07% at 2 mM, but decreased with an increase in temperature. The thermodynamic functions related to the adsorption of cefixime on the copper surface and that of the metal dissolution were computed and analyzed. The results point out spontaneous adsorption, mainly through a physisorption mechanism following Langmuir adsorption isotherm model and an endothermic dissolution process. Quantum chemical calculations were also performed at B3LYP level with 6-31G (d, p) basis set and lead to molecular descriptors such as E<sub>HOMO</sub> (energy of the highest occupied molecular orbital), E<sub>LUMO</sub> (energy of the lowest unoccupied molecular orbital), Δ<i>E</i> (energy gap) and <i>μ<span style="white-space:normal;"></span></i> (dipole moment). The global reactivity descriptors such as <span style="white-space:normal;"><i></i></span><i>χ<span style="white-space:normal;"></span></i> (electronegativity), <span style="white-space:normal;"><i></i></span><i>χ<span style="white-space:normal;"></span></i> (global hardness), <span style="white-space:normal;"><i></i></span><i>S<span style="white-space:normal;"></span></i> (global softness), and <span style="white-space:normal;"><i></i></span><i>ω<span style="white-space:normal;"></span></i> (electrophilicity index) were derived using Koopman’s theorem and analyzed. The local reactivity parameters, including Fukui functions and dual descriptors were determined and discussed. Experimental and theoretical results were found to be in good agreement.展开更多
The theoretical study of chlorpropamide, tolazamide and glipizide was carried out by the </span><span style="font-family:Verdana;">Density Functional Theory </span><span style="font...The theoretical study of chlorpropamide, tolazamide and glipizide was carried out by the </span><span style="font-family:Verdana;">Density Functional Theory </span><span style="font-family:Verdana;">(DFT) at B3LYP/6-31G(d) level. This study</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">made it possible to determine the global reactivity parameters in order to better understand the interactions between the molecules studied and the copper surface. Then, the determination of local reactivity indices (Fukui functions and dual descriptor) on these molecules resulted in the precision </span><span style="font-family:Verdana;">on </span><span style="font-family:Verdana;">the most probable center</span><span style="font-family:Verdana;">s </span><span style="font-family:Verdana;">of nucleophilic and electrophilic attacks within each molecule. The results obtained, show that chloropropamide, tolazamide and glipizide can be good inhibitors against copper corrosion. Thus, the mechanism of copper corrosion inhibition of these compounds in nitric acid solution has been explained </span><span style="font-family:Verdana;">by means of theoretical calculations</span><span style="font-family:Verdana;">.展开更多
Inhibitive properties of NAC and NAM as well as their mixture have been investigated in two different corrosive media through potentiodynamic polarization and electrochemical impedance spectroscopy at 298 K. These ele...Inhibitive properties of NAC and NAM as well as their mixture have been investigated in two different corrosive media through potentiodynamic polarization and electrochemical impedance spectroscopy at 298 K. These electrochemical measurements indicate that the inhibition efficiency increases with the concentration for each of the inhibitors used separately as well as for their mixture. In both cases, the combination behaves as mixed type inhibitor with a great cathodic tendency. NaCl 3.5% highlights an antagonist effect of NAM which reduces the effectiveness of NAC whereas HNO3 1M shows a synergistic effect between them.展开更多
The objective of this work is to prepare one of the best activated carbon (CA) based on wood (Acacia auriculeaformis). The chemical activation method was used for varying the chemical agent namely phosphoric acid H3PO...The objective of this work is to prepare one of the best activated carbon (CA) based on wood (Acacia auriculeaformis). The chemical activation method was used for varying the chemical agent namely phosphoric acid H3PO4 (CAA), sodium hydroxide NaOH (CAB), and sodium chloride NaCl (CAS). The physico-chemical analysis of the three activated carbons indicated that, under the conditions of preparation, the activated carbons possess activation efficiencies lower than 50% (41.81% for CAA, 26.25% for CAB and 48.87% for CAS), low ash content (CAA: 5.00%, CAB: 14.90 and CAS: 6.60%) and iodine values ranging from 190.35 mg/g to 380.71 mg/g, suggesting that the good quality of the prepared activated carbon. The surface functional groups using Boehm test and the zero point charge (pHZPC) methods confirmed the acidic, basic and neutral character for CAA, CAB and CAS respectively (CAA: pHZPC = 4.8, CAB: pHZPC = 8.2, CAS: pHZPC = 6.8). The surface specific areas were determined through the liquid phase adsorption of acetic acid and methylene blue using the Langmuir method and BET analysis. Also, the porosity was determined. The BET surface areas of CAA, CAB and CAS were respectively 561.60 m2/g, 265.00 m2/g and 395.40 m2/g. The influence of chemical activation agent on pores formation was confirmed by scanning electron microscopic (SEM) analysis. CAA was selected as the best activated carbon because of its good surface area and good pore volume compared to those found in the literature. Therefore, its application as an adsorbent for effluents treatment could be explored. In addition, the best activating agent for coal from Acacia auriculeaformis was found to be phosphoric acid.展开更多
The objective of this study is to develop carbon, that of <i></span><i><span style="font-family:Verdana;">Acacia auriculeaformis</span></i><span style="font-family...The objective of this study is to develop carbon, that of <i></span><i><span style="font-family:Verdana;">Acacia auriculeaformis</span></i><span style="font-family:Verdana;"></i></span><span style="font-family:Verdana;"> through its activation in order to eliminate lead in an aqueous medium. A series of activated carbon has been prepared by chemical activation with phosphoric acid, sodium hydroxide and sodium chloride. The determi</span><span style="font-family:Verdana;">nation of the physico-chemical properties of the prepared carbon guided the choice of phosphoric acid activated carbon as the best adsorbent for the</span><span style="font-family:Verdana;"> elimination of lead(II) in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">an </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">aqueous solution. Pb</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;"> adsorption tests in batch mode have shown that the adsorption capacity is influenced by various parameters such as mass, pH, concentration of Pb<sup>2+</sup> ions and contact time linked to the medium and the adsorbent. Adsorption isotherms, kinetic models and thermodynamics have been used to describe the adsorption process. The equilibrium data for activated charcoal correspond well to the model of Freundlich, </span><span style="font-family:Verdana;">Langmuir, Temkin and Kiselev. The kinetic adsorption data proved to be </span><span style="font-family:Verdana;">better described by the pseudo-second order model with </span><span style="font-family:Verdana;">external and intraparticle diffusion which are two decisive steps in the</span><span style="font-family:Verdana;"> adsorption process of Pb<sup>2+</sup> ions. Thermodynamics and adsorption isotherms predict a spontaneous exothermic surface reaction, of the chemisorption type, with ion </span><span><span style="font-family:Verdana;">retention in orderly monolayers on the heterogeneous surface of the adsorbent. Tests carried out with this adsorbent material have contributed to the elimination of the Pb</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;"> ions contained in an industrial effluent with a </span></span><span style="font-family:Verdana;">reduction rate reaching 42.52% against 85.90% in a synthetic solution.展开更多
文摘This study focuses on the preparation of corncob-based biosorbents. The chemical impregnation method was used to vary the chemical agent namely phosphoric acid H3PO4 (BA) and sodium hydroxide NaOH (BB). The physicochemical analysis of the two biosorbents indicated that under the same preparation conditions, the bio-sorbents have after activation yields lower than 50% (24.37% for BB and 49.09% for BA). In addition, the biosorbents have iodine index values between 444.17 mg/g and 418.79 mg/g and specific surfaces related to the adsorption of methylene blue ranging from 18.54 m2/g to 19.70 m2/g. The study of surface functional groups by using the Boehm test and pH zero point charge (pHPZC) confirmed the acidic nature of BA and BB biosorbents with respective values pHPZC = 4.01 and pHPZC = 4.90. The Langmuir method and BET analysis determined the specific surface areas by liquid phase adsorption of methylene blue as well as the porosity. The BET surface areas of BA and BB obtained are 72.01 m2/g and 63.10 m2/g respectively. The influence of the chemical activating agent on the formation of pores was confirmed by electron microscopy (SEM) analysis. From this study, it is found that the best activating agent for corn cobs was found to be phosphoric acid because the BA biosorbent was revealed to be the most favourable due to its surface area and good pore volume which are high compared to sodium hydroxide NaOH. Moreover, their application as adsorbent for effluent treatment could be explored.
文摘The availability of groundwater of acceptable quality has become a difficult challenge to meet in many countries, particularly Côte d’Ivoire. The State of Côte d’Ivoire and rural populations are building hydraulic infrastructure for this purpose. However, the quality of water coming from these infrastructures remains to be determined. This study therefore aims to analyze certain physicochemical parameters of the groundwater of Gloazra, Kouezra and Trahonfla. These are temperature, pH, electrical conductivity, TDS, salinity level, hardness, alkalinity, chloride content and bicarbonate. To determine the pH, electrical conductivity, temperature, TDS, and salinity rate, an electrochemical analysis was carried out. The titrimetric analysis made it possible to determine the chloride and bicarbonate content, alkalinity, and hardness. The results indicate that the studied groundwater is soft and acidic with good mineralization. This water does not present a health hazard to consumers but can affect hydraulic equipment and household containers.
文摘The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected from the Bandama, Comoé, and Bia Rivers in south and south eastern Côte d’Ivoire (West Africa), were analyzed for total metal concentrations and chemical speciation. The results showed that the river sediments were considerably contaminated by Cd and moderately contaminated by As, Cu, Pb, and Zn. Significant spatial variations were observed among the stations but not between the rivers. Metals Cd and Cu were likely to cause more ecological risks. The speciation analysis unravelled that the metal(loid)s partitioned mainly in the residual fraction, with the potential mobile fraction varying from 14% to 28%. The study calls for establishment of strict policies relative to the application of fertilizers and agrochemicals and mining activities to protect the environment and human health risks.
文摘The concentrations of cadmium, copper, lead and zinc in sediment samples from the Vridi Canal (Harbour area of economic capital of Cote d’Ivoire) were determined to evaluate the level of contamination. All metal concentrations in sediment samples, except Cu, were greater than the concentration of Upper Continental Crust (UCC). Sediment pollution assessment was undertaken by using Enrichment Factor (EF), geoaccumulation index (I<sub>geo</sub>) and Pollution Load Index (PLI). The enrichment factor (Cd: EF = 20.04;Pb: EF = 3.43;Zn: EF = 1.56) and géoaccumulation index (Cd: I<sub>geo</sub> = 4.29;Pb: I<sub>geo</sub> = 1.81) showed that the sediments were polluted. The Pollution Load Index (PLI > 1) indicated that the sediments of the studied area were heavily contaminated. Based on the comparison with sediment quality guidelines, the concentrations of cadmium, lead and zinc would be toxic to one or more species of aquatic organisms living in the sediments.
文摘Polycyclic aromatic hydrocarbons (PAHs) are strongly associated with agricultural, residential, transportation, industrial and petroleum activities. In this study, the presence of PAHs (polycyclic aromatic hydrocarbons) was investigated in sediments of the ivory coastal zone (Toukouzou Hozalem-Assinie). The main objectives of this study were to determine the abundance and to predict the source of PAHs in the sediments. Gas chromatography-mass spectrometry (GC-MS) was used to analyze sixteen priority PAHs. Total PAHs concentrations were from 1.31 to 3992.68 mg/kg in sediment with an average concentration of (307.54 ± 16.10) mg/kg. Among all PAHs, Naphthalene (Nap = 332.72 mg/kg) and Phenanthrene (Phe = 41.75 mg/kg) were found in the highest concentration, whereas Benzo (k) Fluoranthene was found in the least concentration in the range of 0 - 0.85 mg/kg (mean 0.24 mg/kg). Bassam-Modeste Lagune (BML) sampling site was the site with the highest concentration of total PAHs (all 16 PAHs) compared to the others due to their location in a highly populated estuary area that receives commercial, tourism, port, petroleum and heavy industrial activities. Diagnostic ratios were used to determine the sources of PAHs and suggested that the PAH profile in the sediments was dominated by 2 and 3 ring PAHs. The patterns of PAH compounds in sediment indicated that contamination is from mixed sources, with a strong indication of petrogenic contamination potentially from spills of fuel, oil and industrial activities.
文摘In this work, low cost coconut biochar based activated carbon (CBAC) was used for adsorption of Butylparaben (BPB) from aqueous medium. The prepared CBAC was characterized using BET, Boehm analysis and the adsorption equilibrium, kinetics and thermodynamics studies of BPB adsorption were carried out. During batch adsorption runs, the effects of factors, such as contact time (0 - 300 min), CBAC dose (200 - 800 mg), pH (3 - 11) and solution temperatures (303 - 348 K) were investigated on BPB removal. Experimental results reveal that the BPB removal efficiency on CBAC is higher than 97% under acidic and neutral conditions. Equilibrium data were fitted by Langmuir, Freundlich and Temkin isotherm models with correlation coefficient more than 0.9. The pseudo-second order kinetic model was observed to fit well the adsorption data. Thermodynamic analysis shows positive values of standard Gibb’s free energy, suggesting the non-spontaneity of the process. The changes in enthalpy (0.2 J.mol-1) and entropy (19 J.mol-1) were found to be endothermic with an increase of randomness. The high adsorption efficiency of the synthesized coconut biochar materials with low cost indicates that it may be a promising adsorbent for removing organic compounds.
文摘Iodization of dietary salt is recommended to prevent and control iodine deficiency disorders. The kinetic study of dietary iodized salt proves to be of interest not only for the determination of the conditions of production of iodine, but also for a good knowledge of the kinetic and thermodynamic parameters of the reaction. In this work, two salt brands were studied and one of them was used for the kinetic study. The kinetic study showed that the reaction proceeded slowly at a medium rate. Since the reaction admits a global order equal to 1, potassium iodide has no influence on this reaction rate. The concentration of iodate ions introduced in the dietary salt is a kinetic parameter that affects the reaction rate. Calculated rate constant was inversely proportional to time. The study has therefore determined experimentally kinetic parameters of the reaction between iodate and iodide ions.
文摘Researches have been undertaken to find a form of valorization of the surplus production of vegetable oils in Côte d’Ivoire for their use as a substitute diesel. The first tests of the use of crude oils-diesel blends by the company Palmindustrie faced enormous difficulties. We have therefore undertaken a campaign of pyrolysis of Tropical Straight Vegetable Oils: palm, copra, peanut, cotton, cabbage palm and shea, between 400°C and 600°C under atmospheric pressure. A silica support was used in co-catalysis either with water or with methylcyclohexane, which is a model compound of cetanes contained in gas oil. This compound has the advantage, unlike the gas oil itself, of not masking the peaks of the pyrolysis recombinates of oils in the chromatograms. The condensed organic phase consists mainly of hydrocarbons including paraffins, olefins, alkylbenzenes and styrenes. The yields of liquid hydrocarbons vary between 72% and 86%. A comparative study of coke precursors and gas production was carried out. A discussion on the parameters to be considered for a large-scale implementation was undertaken.
文摘Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SEM analyses revealed that the surface of the film did not exhibit cracks in the presence of TTIP as a binder in the TiO2 P25 suspension. The following parameters were studied in continuous mode operation: the flow rate in the reactor, the initial concentration of the paraquat, the pH of the solution, the weight of photocatalytic material with the number of foams in the reactor and the weight of the catalyst deposited onto the support. The results showed that by working under optimal operating conditions at natural pH (pH = 6.7), low paraquat (Co = 10 ppm), and flow (26 mL/min), we recorded approximately (43.16 ± 1.00)% oxidation of paraquat and a decrease in total organic carbon (TOC) of (27.13 ± 1.00)% after about 70 minutes. The apparent rate constant is in the order of (0.0656 ± 0.0010) min-1. In addition, by increasing the amount of β-SiC foams coated with TiO2, we improve the degradation of paraquat in the same order. The study of aging of the material showed its stability over time. However, photocatalytic activity was limited after 20 minutes of UV irradiation due to the limitation of the diffusion of the paraquat molecules towards the surface of the photocatalyst. As an outcome, we obtained an efficient TiO2/β-SiC material for photocatalytic degradation of organic compounds in water.
文摘In most developing countries, particularly in the countries of sub-Saharan Africa, corn cobs are considered as waste polluting the environment during the harvest period of this cereal. In order to valorize this agricultural waste, high-performance, inexpensive and low-energy consumption magnetic bioadsorbents were prepared from corn cobs. The chemically activated raw corn cob was magnetized by coating the surface with magnetite nanoparticles. The prepared biosorbents were characterized by FT-IR, XRD, FE-SEM associated with EDX, HR-TEM, TG analysis, BET surface area analysis and XPS. The maximum specific surface area of 35.22 m<sup>2</sup>/g was reached. An attempt to use of these magnetic biosorbents for the removal of heavy metal like Cr(VI) from aqueous solution was envisaged.
文摘Cefixime, a third-generation semi-synthetic cephalosporin antibiotic was used as a copper corrosion inhibitor in 1M HNO<sub>3</sub> solution. The study was conducted through the weight loss technique at 298 - 318 K and theoretical studies based on quantum chemistry. The studied drug inhibited the corrosion of copper in 1M HNO<sub>3</sub> over the cefixime concentration range (0.02 - 2 mM). The inhibition efficiency increased with an increase in the inhibitor concentration to reach 91.07% at 2 mM, but decreased with an increase in temperature. The thermodynamic functions related to the adsorption of cefixime on the copper surface and that of the metal dissolution were computed and analyzed. The results point out spontaneous adsorption, mainly through a physisorption mechanism following Langmuir adsorption isotherm model and an endothermic dissolution process. Quantum chemical calculations were also performed at B3LYP level with 6-31G (d, p) basis set and lead to molecular descriptors such as E<sub>HOMO</sub> (energy of the highest occupied molecular orbital), E<sub>LUMO</sub> (energy of the lowest unoccupied molecular orbital), Δ<i>E</i> (energy gap) and <i>μ<span style="white-space:normal;"></span></i> (dipole moment). The global reactivity descriptors such as <span style="white-space:normal;"><i></i></span><i>χ<span style="white-space:normal;"></span></i> (electronegativity), <span style="white-space:normal;"><i></i></span><i>χ<span style="white-space:normal;"></span></i> (global hardness), <span style="white-space:normal;"><i></i></span><i>S<span style="white-space:normal;"></span></i> (global softness), and <span style="white-space:normal;"><i></i></span><i>ω<span style="white-space:normal;"></span></i> (electrophilicity index) were derived using Koopman’s theorem and analyzed. The local reactivity parameters, including Fukui functions and dual descriptors were determined and discussed. Experimental and theoretical results were found to be in good agreement.
文摘The theoretical study of chlorpropamide, tolazamide and glipizide was carried out by the </span><span style="font-family:Verdana;">Density Functional Theory </span><span style="font-family:Verdana;">(DFT) at B3LYP/6-31G(d) level. This study</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">made it possible to determine the global reactivity parameters in order to better understand the interactions between the molecules studied and the copper surface. Then, the determination of local reactivity indices (Fukui functions and dual descriptor) on these molecules resulted in the precision </span><span style="font-family:Verdana;">on </span><span style="font-family:Verdana;">the most probable center</span><span style="font-family:Verdana;">s </span><span style="font-family:Verdana;">of nucleophilic and electrophilic attacks within each molecule. The results obtained, show that chloropropamide, tolazamide and glipizide can be good inhibitors against copper corrosion. Thus, the mechanism of copper corrosion inhibition of these compounds in nitric acid solution has been explained </span><span style="font-family:Verdana;">by means of theoretical calculations</span><span style="font-family:Verdana;">.
文摘Inhibitive properties of NAC and NAM as well as their mixture have been investigated in two different corrosive media through potentiodynamic polarization and electrochemical impedance spectroscopy at 298 K. These electrochemical measurements indicate that the inhibition efficiency increases with the concentration for each of the inhibitors used separately as well as for their mixture. In both cases, the combination behaves as mixed type inhibitor with a great cathodic tendency. NaCl 3.5% highlights an antagonist effect of NAM which reduces the effectiveness of NAC whereas HNO3 1M shows a synergistic effect between them.
文摘The objective of this work is to prepare one of the best activated carbon (CA) based on wood (Acacia auriculeaformis). The chemical activation method was used for varying the chemical agent namely phosphoric acid H3PO4 (CAA), sodium hydroxide NaOH (CAB), and sodium chloride NaCl (CAS). The physico-chemical analysis of the three activated carbons indicated that, under the conditions of preparation, the activated carbons possess activation efficiencies lower than 50% (41.81% for CAA, 26.25% for CAB and 48.87% for CAS), low ash content (CAA: 5.00%, CAB: 14.90 and CAS: 6.60%) and iodine values ranging from 190.35 mg/g to 380.71 mg/g, suggesting that the good quality of the prepared activated carbon. The surface functional groups using Boehm test and the zero point charge (pHZPC) methods confirmed the acidic, basic and neutral character for CAA, CAB and CAS respectively (CAA: pHZPC = 4.8, CAB: pHZPC = 8.2, CAS: pHZPC = 6.8). The surface specific areas were determined through the liquid phase adsorption of acetic acid and methylene blue using the Langmuir method and BET analysis. Also, the porosity was determined. The BET surface areas of CAA, CAB and CAS were respectively 561.60 m2/g, 265.00 m2/g and 395.40 m2/g. The influence of chemical activation agent on pores formation was confirmed by scanning electron microscopic (SEM) analysis. CAA was selected as the best activated carbon because of its good surface area and good pore volume compared to those found in the literature. Therefore, its application as an adsorbent for effluents treatment could be explored. In addition, the best activating agent for coal from Acacia auriculeaformis was found to be phosphoric acid.
文摘The objective of this study is to develop carbon, that of <i></span><i><span style="font-family:Verdana;">Acacia auriculeaformis</span></i><span style="font-family:Verdana;"></i></span><span style="font-family:Verdana;"> through its activation in order to eliminate lead in an aqueous medium. A series of activated carbon has been prepared by chemical activation with phosphoric acid, sodium hydroxide and sodium chloride. The determi</span><span style="font-family:Verdana;">nation of the physico-chemical properties of the prepared carbon guided the choice of phosphoric acid activated carbon as the best adsorbent for the</span><span style="font-family:Verdana;"> elimination of lead(II) in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">an </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">aqueous solution. Pb</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;"> adsorption tests in batch mode have shown that the adsorption capacity is influenced by various parameters such as mass, pH, concentration of Pb<sup>2+</sup> ions and contact time linked to the medium and the adsorbent. Adsorption isotherms, kinetic models and thermodynamics have been used to describe the adsorption process. The equilibrium data for activated charcoal correspond well to the model of Freundlich, </span><span style="font-family:Verdana;">Langmuir, Temkin and Kiselev. The kinetic adsorption data proved to be </span><span style="font-family:Verdana;">better described by the pseudo-second order model with </span><span style="font-family:Verdana;">external and intraparticle diffusion which are two decisive steps in the</span><span style="font-family:Verdana;"> adsorption process of Pb<sup>2+</sup> ions. Thermodynamics and adsorption isotherms predict a spontaneous exothermic surface reaction, of the chemisorption type, with ion </span><span><span style="font-family:Verdana;">retention in orderly monolayers on the heterogeneous surface of the adsorbent. Tests carried out with this adsorbent material have contributed to the elimination of the Pb</span><sup><span style="font-family:Verdana;">2+</span></sup><span style="font-family:Verdana;"> ions contained in an industrial effluent with a </span></span><span style="font-family:Verdana;">reduction rate reaching 42.52% against 85.90% in a synthetic solution.