The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Compo...The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Composites were produced by applying compocasting process. Tribological properties of the unreinforced alloy and composites were studied using pin-on-disc wear tester, under dry sliding conditions at different specific loads. The influence of secondary mechanical processing with different rolling reductions on the dry sliding wear characteristics of Al matrix composites was also assessed. Hardness measurement and scanning electron microscopy were used for microstructural characterization and investigation of worn surfaces and wear debris. The proper selection of process parameter such as pouring temperature, stirring speed, stirring time, pre-heated temperature of reinforcement can all influence the quality of the fabricated composites. The porosity level of composite should be minimized and the chemical reaction between the reinforcement and matrix should be avoided.展开更多
The microstructure and mechanical properties of nano composites processed via stir casting were studied. The composites were based on the A356 aluminum alloy reinforced with nano SiC particles. The density measurement...The microstructure and mechanical properties of nano composites processed via stir casting were studied. The composites were based on the A356 aluminum alloy reinforced with nano SiC particles. The density measurements show that the samples contain little porosity and the amount of porosity in the composites increases with increasing volume fraction of SiC. The microstructures of the composites were examined using optical microscope and transmission electron microscope. Microscopic observations of the microstructures reveal that the dispersion of the particles is uniform. The yield strength, ultimate tensile strength and the elastic modulus are improved with the addition of nano particles although some reduction in ductility is observed. The highest yield strength and ultimate tensile strength are obtained with the addition of 3.5% SiC nano-particles. A relatively ductile fracture in tensile fractured samples was observed by fractography examination.展开更多
The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baf...The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baffles in a mechanically agitated vessel is to ensure even distribution,reduce settler turbulence,promote the stability of power drawn by the impeller and to prevent swirling and vortexing of liquid,thus,greatly improving the mixing of liquid.The insertion of the appropriate number of baffles clearly improves the extent of liquid mixing.However,excessive baffling would interrupt liquid mixing and lengthen the mixing time.Computational fluid dynamics(CFD) provides a tool for determining detailed information on fluid flow(hydrodynamics) which is necessary for modeling subprocesses in mixer settler.A total of 54 final CFD runs were carried out representing different combinations of variables like number of baffles,density and impeller speed.CFD data shows that amount of separation increases with increasing baffles number and decreasing impeller speed.展开更多
Aluminum alloyed with magnesium and silicon has been used as the matrix material owing to its excellent mechanical properties coupled with good formability and its wide applications in industrial sector. An extrusion ...Aluminum alloyed with magnesium and silicon has been used as the matrix material owing to its excellent mechanical properties coupled with good formability and its wide applications in industrial sector. An extrusion process was developed to consolidate AI 6061-SiCp composites from mixed powders. The results show that the composites were fully densified, with no sign of pores or oxide layers observable in the optical microscope. The SiC particles were distributed uniformly in the matrix. As compared with 6061 alloys, the composites demonstrated a smaller elongation, but exhibited a higher Young's modulus and a larger work hardening capacity. These composites possessed much higher elongation at the same strength level. The present study also addressed the dry wear behavior of the composites at different sliding speeds and applied loads. Values of the friction coefficient of the matrix alloy and composite materials were in expected range for light metals in dry sliding conditions. All of these improvements were attributed to the merits, including full densification of the bulk, uniform dispersion of the SiC particles in the matrix, and strong binding between the SiC particles and the matrix resulting from the extrusion.展开更多
文摘The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Composites were produced by applying compocasting process. Tribological properties of the unreinforced alloy and composites were studied using pin-on-disc wear tester, under dry sliding conditions at different specific loads. The influence of secondary mechanical processing with different rolling reductions on the dry sliding wear characteristics of Al matrix composites was also assessed. Hardness measurement and scanning electron microscopy were used for microstructural characterization and investigation of worn surfaces and wear debris. The proper selection of process parameter such as pouring temperature, stirring speed, stirring time, pre-heated temperature of reinforcement can all influence the quality of the fabricated composites. The porosity level of composite should be minimized and the chemical reaction between the reinforcement and matrix should be avoided.
文摘The microstructure and mechanical properties of nano composites processed via stir casting were studied. The composites were based on the A356 aluminum alloy reinforced with nano SiC particles. The density measurements show that the samples contain little porosity and the amount of porosity in the composites increases with increasing volume fraction of SiC. The microstructures of the composites were examined using optical microscope and transmission electron microscope. Microscopic observations of the microstructures reveal that the dispersion of the particles is uniform. The yield strength, ultimate tensile strength and the elastic modulus are improved with the addition of nano particles although some reduction in ductility is observed. The highest yield strength and ultimate tensile strength are obtained with the addition of 3.5% SiC nano-particles. A relatively ductile fracture in tensile fractured samples was observed by fractography examination.
文摘The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baffles in a mechanically agitated vessel is to ensure even distribution,reduce settler turbulence,promote the stability of power drawn by the impeller and to prevent swirling and vortexing of liquid,thus,greatly improving the mixing of liquid.The insertion of the appropriate number of baffles clearly improves the extent of liquid mixing.However,excessive baffling would interrupt liquid mixing and lengthen the mixing time.Computational fluid dynamics(CFD) provides a tool for determining detailed information on fluid flow(hydrodynamics) which is necessary for modeling subprocesses in mixer settler.A total of 54 final CFD runs were carried out representing different combinations of variables like number of baffles,density and impeller speed.CFD data shows that amount of separation increases with increasing baffles number and decreasing impeller speed.
文摘Aluminum alloyed with magnesium and silicon has been used as the matrix material owing to its excellent mechanical properties coupled with good formability and its wide applications in industrial sector. An extrusion process was developed to consolidate AI 6061-SiCp composites from mixed powders. The results show that the composites were fully densified, with no sign of pores or oxide layers observable in the optical microscope. The SiC particles were distributed uniformly in the matrix. As compared with 6061 alloys, the composites demonstrated a smaller elongation, but exhibited a higher Young's modulus and a larger work hardening capacity. These composites possessed much higher elongation at the same strength level. The present study also addressed the dry wear behavior of the composites at different sliding speeds and applied loads. Values of the friction coefficient of the matrix alloy and composite materials were in expected range for light metals in dry sliding conditions. All of these improvements were attributed to the merits, including full densification of the bulk, uniform dispersion of the SiC particles in the matrix, and strong binding between the SiC particles and the matrix resulting from the extrusion.