This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an...This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an approximate harmonic model. That is, having defined a desired fundamental output voltage, optimal pulse patterns (switching angles) are determined to produce the fundamental output voltage while minimizing the THCD. The complete results for the two cases of three and five switching instants in the first quarter period of pulse width modulation (PWM) waveform are presented. Presence of harmonics in the stator excitation leads to a pulsing-torque component. Considering the fact that if the pulsing-torques are at low frequencies, they can cause troublesome speed fluctuations, shaft fatigue, and unsatisfactory performance in the feedback control system, the 5th, 7th, 1 lth, and 13th current harmonics (in the case of five switching angles) are constrained at some pre-specified values, to mitigate the detrimental effects of low-frequency harmonics. At the same time, the THCD is optimized while the required fundamental output voltage is maintained.展开更多
This paper develops a modified optimization procedure for coordination of a power system stabilizer (PSS) and a thyristor controlled series compensator (TCSC) controller to enhance the power system small signal stabil...This paper develops a modified optimization procedure for coordination of a power system stabilizer (PSS) and a thyristor controlled series compensator (TCSC) controller to enhance the power system small signal stability.The new approach employs eigenvalue-based and time-domain simulation based objective functions simultaneously to improve the optimization convergence rate.A modified particle swarm optimization (MPSO) algorithm is used as the optimization algorithm.The results of simulations and eigenvalue analysis for a single machine infinite bus (SMIB) system equipped with the proposed PSS and TCSC controllers confirm that the new approach is effective in enhancing the system stability.展开更多
An appropriate mathematical model can help researchers to simulate,evaluate,and control a proton exchange membrane fuel cell (PEMFC) stack system.Because a PEMFC is a nonlinear and strongly coupled system,many assumpt...An appropriate mathematical model can help researchers to simulate,evaluate,and control a proton exchange membrane fuel cell (PEMFC) stack system.Because a PEMFC is a nonlinear and strongly coupled system,many assumptions and approximations are considered during modeling.Therefore,some differences are found between model results and the real performance of PEMFCs.To increase the precision of the models so that they can describe better the actual performance,opti-mization of PEMFC model parameters is essential.In this paper,an artificial bee swarm optimization algorithm,called ABSO,is proposed for optimizing the parameters of a steady-state PEMFC stack model suitable for electrical engineering applications.For studying the usefulness of the proposed algorithm,ABSO-based results are compared with the results from a genetic algo-rithm (GA) and particle swarm optimization (PSO).The results show that the ABSO algorithm outperforms the other algorithms.展开更多
文摘This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an approximate harmonic model. That is, having defined a desired fundamental output voltage, optimal pulse patterns (switching angles) are determined to produce the fundamental output voltage while minimizing the THCD. The complete results for the two cases of three and five switching instants in the first quarter period of pulse width modulation (PWM) waveform are presented. Presence of harmonics in the stator excitation leads to a pulsing-torque component. Considering the fact that if the pulsing-torques are at low frequencies, they can cause troublesome speed fluctuations, shaft fatigue, and unsatisfactory performance in the feedback control system, the 5th, 7th, 1 lth, and 13th current harmonics (in the case of five switching angles) are constrained at some pre-specified values, to mitigate the detrimental effects of low-frequency harmonics. At the same time, the THCD is optimized while the required fundamental output voltage is maintained.
文摘This paper develops a modified optimization procedure for coordination of a power system stabilizer (PSS) and a thyristor controlled series compensator (TCSC) controller to enhance the power system small signal stability.The new approach employs eigenvalue-based and time-domain simulation based objective functions simultaneously to improve the optimization convergence rate.A modified particle swarm optimization (MPSO) algorithm is used as the optimization algorithm.The results of simulations and eigenvalue analysis for a single machine infinite bus (SMIB) system equipped with the proposed PSS and TCSC controllers confirm that the new approach is effective in enhancing the system stability.
基金supported by the Renewable Energy Organization of Iran (SANA)
文摘An appropriate mathematical model can help researchers to simulate,evaluate,and control a proton exchange membrane fuel cell (PEMFC) stack system.Because a PEMFC is a nonlinear and strongly coupled system,many assumptions and approximations are considered during modeling.Therefore,some differences are found between model results and the real performance of PEMFCs.To increase the precision of the models so that they can describe better the actual performance,opti-mization of PEMFC model parameters is essential.In this paper,an artificial bee swarm optimization algorithm,called ABSO,is proposed for optimizing the parameters of a steady-state PEMFC stack model suitable for electrical engineering applications.For studying the usefulness of the proposed algorithm,ABSO-based results are compared with the results from a genetic algo-rithm (GA) and particle swarm optimization (PSO).The results show that the ABSO algorithm outperforms the other algorithms.