L-SYNC is a synchronization protocol for Wireless Sensor Networks which is based on larger degree clustering providing efficiency in homogeneous topologies. In L-SYNC, the effectiveness of the routing algorithm for th...L-SYNC is a synchronization protocol for Wireless Sensor Networks which is based on larger degree clustering providing efficiency in homogeneous topologies. In L-SYNC, the effectiveness of the routing algorithm for the synchronization precision of two remote nodes was considered. Clustering in L-SYNC is according to larger degree techniques. These techniques reduce cluster overlapping, resulting in the routing algorithm requiring fewer hops to move from one cluster to another remote cluster. Even though L-SYNC offers higher precision compared to other algorithms, it does not support heterogeneous topologies and its synchronization algorithm can be influenced by unreliable data. In this paper, we present the L-SYNCng (L-SYNC next generation) protocol, working in heterogeneous topologies. Our proposed protocol is scalable in unreliable and noisy environments. Simulation results illustrate that L-SYNCng has better precision in synchronization and scalability.展开更多
文摘L-SYNC is a synchronization protocol for Wireless Sensor Networks which is based on larger degree clustering providing efficiency in homogeneous topologies. In L-SYNC, the effectiveness of the routing algorithm for the synchronization precision of two remote nodes was considered. Clustering in L-SYNC is according to larger degree techniques. These techniques reduce cluster overlapping, resulting in the routing algorithm requiring fewer hops to move from one cluster to another remote cluster. Even though L-SYNC offers higher precision compared to other algorithms, it does not support heterogeneous topologies and its synchronization algorithm can be influenced by unreliable data. In this paper, we present the L-SYNCng (L-SYNC next generation) protocol, working in heterogeneous topologies. Our proposed protocol is scalable in unreliable and noisy environments. Simulation results illustrate that L-SYNCng has better precision in synchronization and scalability.