期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Explainable Conformer Network for Detection of COVID-19 Pneumonia from Chest CT Scan: From Concepts toward Clinical Explainability
1
作者 Mohamed Abdel-Basset Hossam Hawash +2 位作者 Mohamed Abouhawwash S.S.Askar alshaimaa a.tantawy 《Computers, Materials & Continua》 SCIE EI 2024年第1期1171-1187,共17页
The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans.This study aims to investigate the indispensable need for preci... The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans.This study aims to investigate the indispensable need for precise and interpretable diagnostic tools for improving clinical decision-making for COVID-19 diagnosis.This paper proposes a novel deep learning approach,called Conformer Network,for explainable discrimination of viral pneumonia depending on the lung Region of Infections(ROI)within a single modality radiographic CT scan.Firstly,an efficient U-shaped transformer network is integrated for lung image segmentation.Then,a robust transfer learning technique is introduced to design a robust feature extractor based on pre-trained lightweight Big Transfer(BiT-L)and finetuned on medical data to effectively learn the patterns of infection in the input image.Secondly,this work presents a visual explanation method to guarantee clinical explainability for decisions made by Conformer Network.Experimental evaluation of real-world CT data demonstrated that the diagnostic accuracy of ourmodel outperforms cutting-edge studies with statistical significance.The Conformer Network achieves 97.40% of detection accuracy under cross-validation settings.Our model not only achieves high sensitivity and specificity but also affords visualizations of salient features contributing to each classification decision,enhancing the overall transparency and trustworthiness of our model.The findings provide obvious implications for the ability of our model to empower clinical staff by generating transparent intuitions about the features driving diagnostic decisions. 展开更多
关键词 Deep learning COVID-19 multi-modal medical image fusion diagnostic image fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部