期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Scientific Elegance in NIDS: Unveiling Cardinality Reduction, Box-Cox Transformation, and ADASYN for Enhanced Intrusion Detection
1
作者 amerah alabrah 《Computers, Materials & Continua》 SCIE EI 2024年第6期3897-3912,共16页
The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’private information.Many intruders actively seek such private data either for sale... The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’private information.Many intruders actively seek such private data either for sale or other inappropriate purposes.Similarly,national and international organizations have country-level and company-level private information that could be accessed by different network attacks.Therefore,the need for a Network Intruder Detection System(NIDS)becomes essential for protecting these networks and organizations.In the evolution of NIDS,Artificial Intelligence(AI)assisted tools and methods have been widely adopted to provide effective solutions.However,the development of NIDS still faces challenges at the dataset and machine learning levels,such as large deviations in numeric features,the presence of numerous irrelevant categorical features resulting in reduced cardinality,and class imbalance in multiclass-level data.To address these challenges and offer a unified solution to NIDS development,this study proposes a novel framework that preprocesses datasets and applies a box-cox transformation to linearly transform the numeric features and bring them into closer alignment.Cardinality reduction was applied to categorical features through the binning method.Subsequently,the class imbalance dataset was addressed using the adaptive synthetic sampling data generation method.Finally,the preprocessed,refined,and oversampled feature set was divided into training and test sets with an 80–20 ratio,and two experiments were conducted.In Experiment 1,the binary classification was executed using four machine learning classifiers,with the extra trees classifier achieving the highest accuracy of 97.23%and an AUC of 0.9961.In Experiment 2,multiclass classification was performed,and the extra trees classifier emerged as the most effective,achieving an accuracy of 81.27%and an AUC of 0.97.The results were evaluated based on training,testing,and total time,and a comparative analysis with state-of-the-art studies proved the robustness and significance of the applied methods in developing a timely and precision-efficient solution to NIDS. 展开更多
关键词 Adaptive synthetic sampling class imbalance features cardinality network security over sampling
下载PDF
Injections Attacks Efficient and Secure Techniques Based on Bidirectional Long Short Time Memory Model 被引量:1
2
作者 Abdulgbar A.R.Farea Gehad Abdullah Amran +4 位作者 Ebraheem Farea amerah alabrah Ahmed A.Abdulraheem Muhammad Mursil Mohammed A.A.Al-qaness 《Computers, Materials & Continua》 SCIE EI 2023年第9期3605-3622,共18页
E-commerce,online ticketing,online banking,and other web-based applications that handle sensitive data,such as passwords,payment information,and financial information,are widely used.Various web developers may have va... E-commerce,online ticketing,online banking,and other web-based applications that handle sensitive data,such as passwords,payment information,and financial information,are widely used.Various web developers may have varying levels of understanding when it comes to securing an online application.Structured Query language SQL injection and cross-site scripting are the two vulnerabilities defined by the OpenWeb Application Security Project(OWASP)for its 2017 Top Ten List Cross Site Scripting(XSS).An attacker can exploit these two flaws and launch malicious web-based actions as a result of these flaws.Many published articles focused on these attacks’binary classification.This article described a novel deep-learning approach for detecting SQL injection and XSS attacks.The datasets for SQL injection and XSS payloads are combined into a single dataset.The dataset is labeledmanually into three labels,each representing a kind of attack.This work implements some pre-processing algorithms,including Porter stemming,one-hot encoding,and the word-embedding method to convert a word’s text into a vector.Our model used bidirectional long short-term memory(BiLSTM)to extract features automatically,train,and test the payload dataset.The payloads were classified into three types by BiLSTM:XSS,SQL injection attacks,and normal.The outcomes demonstrated excellent performance in classifying payloads into XSS attacks,injection attacks,and non-malicious payloads.BiLSTM’s high performance was demonstrated by its accuracy of 99.26%. 展开更多
关键词 Web security SQL injection XSS deep learning RNN LSTM BiLSTM
下载PDF
A Genetic Algorithm-Based Optimized Transfer Learning Approach for Breast Cancer Diagnosis
3
作者 Hussain AlSalman Taha Alfakih +2 位作者 Mabrook Al-Rakhami Mohammad Mehedi Hassan amerah alabrah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2575-2608,共34页
Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,integral for early detection and effective treatment.While deep learning has significantly advanced the analy... Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,integral for early detection and effective treatment.While deep learning has significantly advanced the analysis of mammographic images,challenges such as low contrast,image noise,and the high dimensionality of features often degrade model performance.Addressing these challenges,our study introduces a novel method integrating Genetic Algorithms(GA)with pre-trained Convolutional Neural Network(CNN)models to enhance feature selection and classification accuracy.Our approach involves a systematic process:first,we employ widely-used CNN architectures(VGG16,VGG19,MobileNet,and DenseNet)to extract a broad range of features from the Medical Image Analysis Society(MIAS)mammography dataset.Subsequently,a GA optimizes these features by selecting the most relevant and least redundant,aiming to overcome the typical pitfalls of high dimensionality.The selected features are then utilized to train several classifiers,including Linear and Polynomial Support Vector Machines(SVMs),K-Nearest Neighbors,Decision Trees,and Random Forests,enabling a robust evaluation of the method’s effectiveness across varied learning algorithms.Our extensive experimental evaluation demonstrates that the integration of MobileNet and GA significantly improves classification accuracy,from 83.33%to 89.58%,underscoring the method’s efficacy.By detailing these steps,we highlight the innovation of our approach which not only addresses key issues in breast cancer imaging analysis but also offers a scalable solution potentially applicable to other domains within medical imaging. 展开更多
关键词 Deep learning convolution neural network(CNN) support vector machine(SVM) genetic algorithmic(GA) breast cancer an optimized smart diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部