期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Biopolymer stabilization of clayey soil
1
作者 Mahdieh Azimi amin soltani +2 位作者 Mehdi Mirzababaei Mark B.Jaksa Nanjappa Ashwath 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2801-2812,共12页
This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on... This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms. 展开更多
关键词 Soil stabilization High plasticity clay Biopolymer dosage Hydrated lime Curing time Unconfined compressive strength(UCS)
下载PDF
Mechanical behavior of micaceous clays 被引量:5
2
作者 Jiahe Zhang amin soltani +1 位作者 An Deng Mark B.Jaksa 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第5期1044-1054,共11页
This study aims to investigate the effect of mica content on the mechanical properties of clays.Commercially available ground mica was blended with a locally available clayey soil,at varying mica contents by mass of 5... This study aims to investigate the effect of mica content on the mechanical properties of clays.Commercially available ground mica was blended with a locally available clayey soil,at varying mica contents by mass of 5%,10%,15%,20%,25%and 30%,to artificially prepare various micaceous clay blends.The preliminary testing phase included consistency limits and standard Proctor compaction tests.The primary testing program consisted of unconfined compression(UC),direct shear(DS)and scanning electron microscopy(SEM)tests.The test results showed that the liquid and plastic limits exhibited a linear,monotonically increasing trend with increase in mica content.The rate of increase in the plastic limit,however,was found to be greater than that of the liquid limit,thereby leading to a gradual transition towards a non-plastic,cohesionless character.The soft,spongy fabric and high water demand of the mica mineral led to higher optimum water contents and lower maximum dry unit weights with increasing mica content.Under low confinement conditions,i.e.the UC test and the DS test at low normal stresses,the shear strength was adversely affected by mica.However,the closer packing of the clay and mica components in the matrix under high confinement conditions offsets the adverse effects of mica by inducing frictional resistance at the shearing interface,thus leading to improved strength resistance. 展开更多
关键词 Micaceous CLAY MICA content CONSISTENCY limits COMPACTION SHEAR strength CONFINEMENT Frictional resistance
下载PDF
Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide 被引量:4
3
作者 amin soltani An Deng +1 位作者 Abbas Taheri Brendan C.O’Kelly 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期252-261,共10页
This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experime... This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experimental program consisted of consistency limits,sediment volume,compaction and oedometer cyclic swell-shrink tests,performed using distilled water and four different PAM-to-water solutions of P_(D)=0.1 g/L,0.2 g/L,0.4 g/L and 0.6 g/L as the mixing liquids.Overall,the relative swelling and shrinkage strains were found to decrease with increasing number of applied swell-shrink cycles,with an‘elastic equilibrium’condition achieved on the conclusion of four cycles.The propensity for swelling/shrinkage potential reduction(for any given cycle)was found to be in favor of increasing the PAM dosage up to P_(D)=0.2 g/L,beyond which the excess PAM molecules self-associate as aggregates,thereby functioning as a lubricant instead of a flocculant;this critical dosage was termed‘maximum flocculation dosage’(MFD).The MFD assertion was discussed and validated using the consistency limits and sediment volume properties,both exhibiting only marginal variations beyond the identified MFD of P_(D)=0.2 g/L.The accumulated axial strain progressively transitioned from‘expansive’for the unamended soil to an ideal‘neutral’state at the MFD,while higher dosages demonstrated undesirable‘contractive’states. 展开更多
关键词 Expansive soil Polyacrylamide(PAM) Consistency limits Sediment volume Swell-shrink cycles Swelling and shrinkage strains Accumulated axial strain
下载PDF
Discussion on "Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil" [J Rock Mech Geotech Eng 10(2018)188-194]
4
作者 amin soltani Mehdi Mirzababaei 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2019年第1期214-218,共5页
The present discussion aims at complementing the original work published by Baldovino et al.(2018) by outlining a novel point of view. In light of the inherent limitations associated with the empirical model suggested... The present discussion aims at complementing the original work published by Baldovino et al.(2018) by outlining a novel point of view. In light of the inherent limitations associated with the empirical model suggested in the original article, the dimensional analysis technique was introduced to the soil-lime strength problem, thereby leading to the development of simple and physically meaningful dimensional models capable of predicting the unconfined compressive and splitting tensile strengths of compacted soil-lime mixtures as a function of the mixture's index properties, i.e. lime content, initial placement(or compaction) condition, initial specific surface area and curing time. The predictive capacity of the proposed dimensional models was examined and validated by statistical techniques. The proposed dimensional models contain a limited number of fitting parameters, which can be calibrated by minimal experimental effort and hence implemented for predictive purposes. 展开更多
关键词 Dimensional analysis LIME content CURING time Specific surface area Unconfined compressive STRENGTH Splitting tensile STRENGTH
下载PDF
Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor 被引量:2
5
作者 amin soltani Frederik Kuschewski +11 位作者 Marlene Bonmann Andrey Generalov Andrei Vorobiev Florian Ludwig Matthias M.Wiecha Dovile Cibiraite Frederik Walla Stephan Winnerl Susanne C.Kehr Lukas M.Eng Jan Stake Hartmut G.Roskos 《Light(Science & Applications)》 SCIE EI CAS CSCD 2020年第1期1079-1085,共7页
Plasma waves play an important role in many solid-state phenomena and devices.They also become significant in electronic device structures as the operation frequencies of these devices increase.A prominent example is ... Plasma waves play an important role in many solid-state phenomena and devices.They also become significant in electronic device structures as the operation frequencies of these devices increase.A prominent example is field-effect transistors(FETs),that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies,where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time.Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave,collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode.In this paper,we present the first direct visualization of these waves.Employing graphene FETs containing a buried gate electrode,we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions.Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting.The plasma waves,excited at 2 THz,are overdamped,and their decay time lies in the range of 25-70 fs.Despite this short decay time,the decay length is rather long,i.e.,0.3-0.5μm,because of the rather large propagation speed of the plasma waves,which is found to lie in the range of 3.5-7×10^(6)m/s,in good agreement with theory.The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted 1/4 power law. 展开更多
关键词 ANTENNA CHANNEL TRANSISTOR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部