期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Outsmarting Android Malware with Cutting-Edge Feature Engineering and Machine Learning Techniques 被引量:1
1
作者 Ahsan Wajahat Jingsha He +4 位作者 Nafei Zhu Tariq Mahmood Tanzila Saba amjad rehman khan Faten S.A.lamri 《Computers, Materials & Continua》 SCIE EI 2024年第4期651-673,共23页
The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capable... The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capableof automatically detecting andmitigatingmalicious activities in Android applications(apps).Such technologies arecrucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world.Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitationsthey require substantial computational resources and are prone to a high frequency of false positives.This meansthat while attempting to identify security breaches,these methods often consume considerable processing powerand mistakenly flag benign activities as malicious,leading to inefficiencies and reduced reliability in malwaredetection.The proposed approach includes a data preprocessing step that removes duplicate samples,managesunbalanced datasets,corrects inconsistencies,and imputes missing values to ensure data accuracy.The Minimaxmethod is then used to normalize numerical data,followed by feature vector extraction using the Gain ratio andChi-squared test to identify and extract the most significant characteristics using an appropriate prediction model.This study focuses on extracting a subset of attributes best suited for the task and recommending a predictivemodel based on domain expert opinion.The proposed method is evaluated using Drebin and TUANDROMDdatasets containing 15,036 and 4,464 benign and malicious samples,respectively.The empirical result shows thatthe RandomForest(RF)and Support VectorMachine(SVC)classifiers achieved impressive accuracy rates of 98.9%and 98.8%,respectively,in detecting unknown Androidmalware.A sensitivity analysis experiment was also carriedout on all three ML-based classifiers based on MAE,MSE,R2,and sensitivity parameters,resulting in a flawlessperformance for both datasets.This approach has substantial potential for real-world applications and can serve asa valuable tool for preventing the spread of Androidmalware and enhancing mobile device security. 展开更多
关键词 Android malware detection machine learning SVC K-Nearest Neighbors(KNN) RF
下载PDF
Image Fusion Using Wavelet Transformation and XGboost Algorithm
2
作者 Shahid Naseem Tariq Mahmood +4 位作者 amjad rehman khan Umer Farooq Samra Nawazish Faten S.Alamri Tanzila Saba 《Computers, Materials & Continua》 SCIE EI 2024年第4期801-817,共17页
Recently,there have been several uses for digital image processing.Image fusion has become a prominent application in the domain of imaging processing.To create one final image that provesmore informative and helpful ... Recently,there have been several uses for digital image processing.Image fusion has become a prominent application in the domain of imaging processing.To create one final image that provesmore informative and helpful compared to the original input images,image fusion merges two or more initial images of the same item.Image fusion aims to produce,enhance,and transform significant elements of the source images into combined images for the sake of human visual perception.Image fusion is commonly employed for feature extraction in smart robots,clinical imaging,audiovisual camera integration,manufacturing process monitoring,electronic circuit design,advanced device diagnostics,and intelligent assembly line robots,with image quality varying depending on application.The research paper presents various methods for merging images in spatial and frequency domains,including a blend of stable and curvelet transformations,everageMax-Min,weighted principal component analysis(PCA),HIS(Hue,Intensity,Saturation),wavelet transform,discrete cosine transform(DCT),dual-tree Complex Wavelet Transform(CWT),and multiple wavelet transform.Image fusion methods integrate data from several source images of an identical target,thereby enhancing information in an extremely efficient manner.More precisely,in imaging techniques,the depth of field constraint precludes images from focusing on every object,leading to the exclusion of certain characteristics.To tackle thess challanges,a very efficient multi-focus wavelet decomposition and recompositionmethod is proposed.The use of these wavelet decomposition and recomposition techniques enables this method to make use of existing optimized wavelet code and filter choice.The simulated outcomes provide evidence that the suggested approach initially extracts particular characteristics from images in order to accurately reflect the level of clarity portrayed in the original images.This study enhances the performance of the eXtreme Gradient Boosting(XGBoost)algorithm in detecting brain malignancies with greater precision through the integration of computational image analysis and feature selection.The performance of images is improved by segmenting them employing the K-Means algorithm.The segmentation method aids in identifying specific regions of interest,using Particle Swarm Optimization(PCA)for trait selection and XGBoost for data classification.Extensive trials confirm the model’s exceptional visual performance,achieving an accuracy of up to 97.067%and providing good objective indicators. 展开更多
关键词 Image fusion max-min average CWT XGBoost DCT inclusive innovations spatial and frequency domain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部