期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Concise and Varied Visual Features-Based Image Captioning Model with Visual Selection
1
作者 Alaa Thobhani Beiji Zou +4 位作者 Xiaoyan Kui amr abdussalam Muhammad Asim Naveed Ahmed Mohammed Ali Alshara 《Computers, Materials & Continua》 SCIE EI 2024年第11期2873-2894,共22页
Image captioning has gained increasing attention in recent years.Visual characteristics found in input images play a crucial role in generating high-quality captions.Prior studies have used visual attention mechanisms... Image captioning has gained increasing attention in recent years.Visual characteristics found in input images play a crucial role in generating high-quality captions.Prior studies have used visual attention mechanisms to dynamically focus on localized regions of the input image,improving the effectiveness of identifying relevant image regions at each step of caption generation.However,providing image captioning models with the capability of selecting the most relevant visual features from the input image and attending to them can significantly improve the utilization of these features.Consequently,this leads to enhanced captioning network performance.In light of this,we present an image captioning framework that efficiently exploits the extracted representations of the image.Our framework comprises three key components:the Visual Feature Detector module(VFD),the Visual Feature Visual Attention module(VFVA),and the language model.The VFD module is responsible for detecting a subset of the most pertinent features from the local visual features,creating an updated visual features matrix.Subsequently,the VFVA directs its attention to the visual features matrix generated by the VFD,resulting in an updated context vector employed by the language model to generate an informative description.Integrating the VFD and VFVA modules introduces an additional layer of processing for the visual features,thereby contributing to enhancing the image captioning model’s performance.Using the MS-COCO dataset,our experiments show that the proposed framework competes well with state-of-the-art methods,effectively leveraging visual representations to improve performance.The implementation code can be found here:https://github.com/althobhani/VFDICM(accessed on 30 July 2024). 展开更多
关键词 Visual attention image captioning visual feature detector visual feature visual attention
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部