Developmental transitions in some parasitic angiosperms are tied directly to host-derived chemical cues (xenognosins). The obligate hemi-parasite Striga asiatica, initiates the root apical meristem population (germina...Developmental transitions in some parasitic angiosperms are tied directly to host-derived chemical cues (xenognosins). The obligate hemi-parasite Striga asiatica, initiates the root apical meristem population (germination), development of the host attachment organ (the haustorium), and shoot apical meristem initiation (seed coat shedding) in response to specific xengonosins. These checkpoints synchronize spatial and temporal tissue development. We have now exploited the external control over these developmental transitions to trace functional expression in haustorial organogenesis. Genes associated with phytohormone regulation, metabolism, vascular tissue development, and reactive oxygen species (ROS) production identified in this study suggest an elaborate and global response closely tied to plant defense and redox chemistry that may also be components of a more general quorum sensing-type mechanism in plants.展开更多
文摘Developmental transitions in some parasitic angiosperms are tied directly to host-derived chemical cues (xenognosins). The obligate hemi-parasite Striga asiatica, initiates the root apical meristem population (germination), development of the host attachment organ (the haustorium), and shoot apical meristem initiation (seed coat shedding) in response to specific xengonosins. These checkpoints synchronize spatial and temporal tissue development. We have now exploited the external control over these developmental transitions to trace functional expression in haustorial organogenesis. Genes associated with phytohormone regulation, metabolism, vascular tissue development, and reactive oxygen species (ROS) production identified in this study suggest an elaborate and global response closely tied to plant defense and redox chemistry that may also be components of a more general quorum sensing-type mechanism in plants.