In this correspondence,we establish mean convergence theorems for the maximum of normed double sums of Banach space valued random elements.Most of the results pertain to random elements which are M-dependent.We expand...In this correspondence,we establish mean convergence theorems for the maximum of normed double sums of Banach space valued random elements.Most of the results pertain to random elements which are M-dependent.We expand and improve a number of particular cases in the literature on mean convergence of random elements in Banach spaces.One of the main contributions of the paper is to simplify and improve a recent result of Li,Presnell,and Rosalsky[Journal of Mathematical Inequalities,16,117–126(2022)].A new maximal inequality for double sums of M-dependent random elements is proved which may be of independent interest.The sharpness of the results is illustrated by four examples.展开更多
For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergenc...For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence.展开更多
For a double array {V_(m,n), m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p(1 ≤ p ≤ 2) Banach space and an increasing double array {b_(m,n), m ≥1, n ≥ 1} of positive c...For a double array {V_(m,n), m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p(1 ≤ p ≤ 2) Banach space and an increasing double array {b_(m,n), m ≥1, n ≥ 1} of positive constants, the limit law ■ and in L_p as m∨n→∞ is shown to hold if ■ This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space.展开更多
For a double array of independent random elements {Vmn,m ≥ 1,n ≥ 1} in a real separable Banach space,conditions are provided under which the weak and strong laws of large numbers for the double sums mi=1 nj=1Vij,m ...For a double array of independent random elements {Vmn,m ≥ 1,n ≥ 1} in a real separable Banach space,conditions are provided under which the weak and strong laws of large numbers for the double sums mi=1 nj=1Vij,m ≥ 1,n ≥ 1 are equivalent.Both the identically distributed and the nonidentically distributed cases are treated.In the main theorems,no assumptions are made concerning the geometry of the underlying Banach space.These theorems are applied to obtain Kolmogorov,Brunk–Chung,and Marcinkiewicz–Zygmund type strong laws of large numbers for double sums in Rademacher type p(1 ≤ p ≤ 2) Banach spaces.展开更多
For a blockwise martingale difference sequence of random elements {Vn, n ≥ 1} taking values in a real separable martingale type p (1 ≤ p ≤ 2) Banach space, conditions are provided for strong laws of large numbers...For a blockwise martingale difference sequence of random elements {Vn, n ≥ 1} taking values in a real separable martingale type p (1 ≤ p ≤ 2) Banach space, conditions are provided for strong laws of large numbers of the form limn→∞ Vi/gn = 0 almost surely to hold where the constants gn ↑∞. A result of Hall and Heyde [Martingale Limit Theory and Its Application, Academic Press, New York, 1980, p. 36] which was obtained for sequences of random variables is extended to a martingale type p (1〈 p ≤2) Banach space setting and to hold with a Marcinkiewicz-Zygmund type normalization. Illustrative examples and counterexamples are provided.展开更多
In this paper, complete moment convergence for widely orthant dependent random vari- ables is investigated under some mild conditions. For arrays of rowwise widely orthant dependent random variables, the main results ...In this paper, complete moment convergence for widely orthant dependent random vari- ables is investigated under some mild conditions. For arrays of rowwise widely orthant dependent random variables, the main results extend recent results on complete convergence to complete moment convergence. These results on complete moment convergence are shown to yield new results on complete integral convergence.展开更多
For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of ...For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm is investigated. Sets of conditions are provided under which (i) lim sup n→∞ ||Sn||/an〈∞ a.s.and ∞ ∑n=1(1/n)P(||Sn||/an ≥ε〈∞for all ε 〉 λ for some constant λ ∈ [0, ∞) are equivalent;(ii) For all constants λ ∈ [0, ∞),lim sup ||Sn||/an =λ a.s.and ^∞∑ n=1(1/n) P(||Sn||/an ≥ε){〈∞, if ε〉λ =∞,if ε〈λare equivalent. In general, no geometric conditions are imposed on the underlying Banach space. Corollaries are presented and new results are obtained even in the case of real-valued random variables.展开更多
Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i...Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut.展开更多
文摘In this correspondence,we establish mean convergence theorems for the maximum of normed double sums of Banach space valued random elements.Most of the results pertain to random elements which are M-dependent.We expand and improve a number of particular cases in the literature on mean convergence of random elements in Banach spaces.One of the main contributions of the paper is to simplify and improve a recent result of Li,Presnell,and Rosalsky[Journal of Mathematical Inequalities,16,117–126(2022)].A new maximal inequality for double sums of M-dependent random elements is proved which may be of independent interest.The sharpness of the results is illustrated by four examples.
基金supported by National Natural Science Foundation of China (Grant No. 10871146)supported by Natural Sciences and Engineering Research Council of Canada
文摘For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence.
文摘For a double array {V_(m,n), m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p(1 ≤ p ≤ 2) Banach space and an increasing double array {b_(m,n), m ≥1, n ≥ 1} of positive constants, the limit law ■ and in L_p as m∨n→∞ is shown to hold if ■ This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space.
基金supported by the Vietnam Institute for Advanced Study in Mathematics(VIASM)the Vietnam National Foundation for Sciences and Technology Development NAFOSTED(Grant No.101.01.2012.13)supported by NAFOSTED(Grant No.101.03.2012.17)
文摘For a double array of independent random elements {Vmn,m ≥ 1,n ≥ 1} in a real separable Banach space,conditions are provided under which the weak and strong laws of large numbers for the double sums mi=1 nj=1Vij,m ≥ 1,n ≥ 1 are equivalent.Both the identically distributed and the nonidentically distributed cases are treated.In the main theorems,no assumptions are made concerning the geometry of the underlying Banach space.These theorems are applied to obtain Kolmogorov,Brunk–Chung,and Marcinkiewicz–Zygmund type strong laws of large numbers for double sums in Rademacher type p(1 ≤ p ≤ 2) Banach spaces.
基金supported in part by the National Foundation for Science Technology Development,Vietnam (NAFOSTED) (Grant No. 101.02.32.09)
文摘For a blockwise martingale difference sequence of random elements {Vn, n ≥ 1} taking values in a real separable martingale type p (1 ≤ p ≤ 2) Banach space, conditions are provided for strong laws of large numbers of the form limn→∞ Vi/gn = 0 almost surely to hold where the constants gn ↑∞. A result of Hall and Heyde [Martingale Limit Theory and Its Application, Academic Press, New York, 1980, p. 36] which was obtained for sequences of random variables is extended to a martingale type p (1〈 p ≤2) Banach space setting and to hold with a Marcinkiewicz-Zygmund type normalization. Illustrative examples and counterexamples are provided.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11671012,11501004 and 11501005)the Natural Science Foundation of Anhui Province(Grant No.1508085J06)+1 种基金the Key Projects for Academic Talent of Anhui Province(Grant No.gxbjZD2016005)the Research Teaching Model Curriculum of Anhui University(Grant No.xjyjkc1407)
文摘In this paper, complete moment convergence for widely orthant dependent random vari- ables is investigated under some mild conditions. For arrays of rowwise widely orthant dependent random variables, the main results extend recent results on complete convergence to complete moment convergence. These results on complete moment convergence are shown to yield new results on complete integral convergence.
基金the Natural Sciences and Engineering Research Council of Canada
文摘For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm is investigated. Sets of conditions are provided under which (i) lim sup n→∞ ||Sn||/an〈∞ a.s.and ∞ ∑n=1(1/n)P(||Sn||/an ≥ε〈∞for all ε 〉 λ for some constant λ ∈ [0, ∞) are equivalent;(ii) For all constants λ ∈ [0, ∞),lim sup ||Sn||/an =λ a.s.and ^∞∑ n=1(1/n) P(||Sn||/an ≥ε){〈∞, if ε〉λ =∞,if ε〈λare equivalent. In general, no geometric conditions are imposed on the underlying Banach space. Corollaries are presented and new results are obtained even in the case of real-valued random variables.
基金a grant from the Natural Sciences and Engineering Research Council of Canada
文摘Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut.