期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Managing power grids through topology actions: A comparative study between advanced rule-based and reinforcement learning agents
1
作者 Malte Lehna Jan Viebahn +2 位作者 antoine marot Sven Tomforde Christoph Scholz 《Energy and AI》 2023年第4期283-293,共11页
The operation of electricity grids has become increasingly complex due to the current upheaval and the increase in renewable energy production.As a consequence,active grid management is reaching its limits with conven... The operation of electricity grids has become increasingly complex due to the current upheaval and the increase in renewable energy production.As a consequence,active grid management is reaching its limits with conventional approaches.In the context of the Learning to Run a Power Network(L2RPN)challenge,it has been shown that Reinforcement Learning(RL)is an efficient and reliable approach with considerable potential for automatic grid operation.In this article,we analyse the submitted agent from Binbinchen and provide novel strategies to improve the agent,both for the RL and the rule-based approach.The main improvement is a N-1 strategy,where we consider topology actions that keep the grid stable,even if one line is disconnected.More,we also propose a topology reversion to the original grid,which proved to be beneficial.The improvements are tested against reference approaches on the challenge test sets and are able to increase the performance of the rule-based agent by 27%.In direct comparison between rule-based and RL agent we find similar performance.However,the RL agent has a clear computational advantage.We also analyse the behaviour in an exemplary case in more detail to provide additional insights.Here,we observe that through the N-1 strategy,the actions of both the rule-based and the RL agent become more diversified. 展开更多
关键词 Deep reinforcement learning Electricity grids Learning to run a power network Topology control Proximal policy optimisation
原文传递
Perspectives on Future Power System Control Centers for Energy Transition 被引量:2
2
作者 antoine marot Adrian Kelly +4 位作者 Matija Naglic Vincent Barbesant Jochen Cremer Alexandru Stefanov Jan Viebahn 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期328-344,共17页
Today's power systems are seeing a paradigm shift under the energy transition,sparkled by the electrification of demand,digitalisation of systems,and an increasing share of decarbonated power generation.Most of th... Today's power systems are seeing a paradigm shift under the energy transition,sparkled by the electrification of demand,digitalisation of systems,and an increasing share of decarbonated power generation.Most of these changes have a direct impact on their control centers,forcing them to handle weather-based energy resources,new interconnections with neighbouring transmission networks,more markets,active distribution networks,micro-grids,and greater amounts of available data.Unfortunately,these changes have translated during the past decade to small,incremental changes,mostly centered on hardware,software,and human factors.We assert that more transformative changes are needed,especially regarding human-centered design approaches,to enable control room operators to manage the future power system.This paper discusses the evolution of operators towards continuous operation planners,monitoring complex time horizons thanks to adequate real-time automation.Reviewing upcoming challenges as well as emerging technologies for power systems,we present our vision of a new evolutionary architecture for control centers,both at backend and frontend levels.We propose a unified hypervision scheme based on structured decision-making concepts,providing operators with proactive,collaborative,and effective decision support. 展开更多
关键词 Artificial intelligence cyber-phvsical system DECISION-MAKING digital architecture digital twin energy transition hypervision.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部