In the present study a group of four indigenous and less popular rice genotypes (Meghi, Panibhasha, Jabra and Sholey) reported by growers as submergence tolerant lines from flood prone areas of south Bengal were explo...In the present study a group of four indigenous and less popular rice genotypes (Meghi, Panibhasha, Jabra and Sholey) reported by growers as submergence tolerant lines from flood prone areas of south Bengal were explored through study of nodal anatomy, physio-biochemical screening under submergence and genotyping with submergence tolerance linked rice microsatellite loci (RM loci). To identify the different allelic forms of different Sub1 compnents (Sub1A, Sub1B and Sub1C) among the studied lines, the genomic DNA of individual genotypes was amplified with three ethylene response factor like genes from Sub1 loci, located on rice chromosome 9. From the different physio-biochemical experiments performed in this investigation, it has been shown that Meghi and Jabra are the two probable potent genotypes which share common properties of both submergence tolerant and deep water nature whereas rest two genotypes (Sholey and Panibhasha) behave like typical deep water rice. The submergence tolerance property of Meghi was also confirmed from submergence tolerance linked SSR based genotyping by sharing with FR13A for some common alleles as reflected in fingerprint derived dendrogram. The rest of the genotypes shared a number of alleles and were included in a separate cluster. The common behaviour of Meghi and FR13A under submergence was also confirmed from genetic study of Sub1 loci through sharing of some common alleles for three Sub1 components (Sub1A, Sub1B and Sub1C loci). One SSR loci (RM 285) was identified as a potent molecular marker for submergence tolerance breeding programme involving these two selected rice lines (Meghi and Jabra) as donor plant through marker assisted selection.展开更多
文摘In the present study a group of four indigenous and less popular rice genotypes (Meghi, Panibhasha, Jabra and Sholey) reported by growers as submergence tolerant lines from flood prone areas of south Bengal were explored through study of nodal anatomy, physio-biochemical screening under submergence and genotyping with submergence tolerance linked rice microsatellite loci (RM loci). To identify the different allelic forms of different Sub1 compnents (Sub1A, Sub1B and Sub1C) among the studied lines, the genomic DNA of individual genotypes was amplified with three ethylene response factor like genes from Sub1 loci, located on rice chromosome 9. From the different physio-biochemical experiments performed in this investigation, it has been shown that Meghi and Jabra are the two probable potent genotypes which share common properties of both submergence tolerant and deep water nature whereas rest two genotypes (Sholey and Panibhasha) behave like typical deep water rice. The submergence tolerance property of Meghi was also confirmed from submergence tolerance linked SSR based genotyping by sharing with FR13A for some common alleles as reflected in fingerprint derived dendrogram. The rest of the genotypes shared a number of alleles and were included in a separate cluster. The common behaviour of Meghi and FR13A under submergence was also confirmed from genetic study of Sub1 loci through sharing of some common alleles for three Sub1 components (Sub1A, Sub1B and Sub1C loci). One SSR loci (RM 285) was identified as a potent molecular marker for submergence tolerance breeding programme involving these two selected rice lines (Meghi and Jabra) as donor plant through marker assisted selection.