Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co...Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.展开更多
The placenta plays a crucial role in successful mammalian reproduction.Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fe...The placenta plays a crucial role in successful mammalian reproduction.Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons,essential for full-term fetal development.The cow placenta harbors at least two trophoblast cell populations:uninucleate(UNC)and binucleate(BNC)cells.However,the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches,and the molecular mechanisms governing trophoblast differentiation and functionalization.To fill this knowledge gap,we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation,attaining high-resolution,spatially resolved gene expression profiles.Based on clustering and cell marker gene expression analyses,key transcription factors,including YBX1 and NPAS2,were shown to regulate the heterogeneity of trophoblast cell subpopulations.Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment.Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation.Additionally,spatial modules and co-variant genes that help shape specific tissue structures were identified.Together,these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.展开更多
Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturall...Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.展开更多
Prokaryotic diversity and community composition in the water column of eight stations(63 samples) around the Antarctic Peninsula of the Southern Ocean were investigated. Through pyrosequencing of the V3–V4hypervariab...Prokaryotic diversity and community composition in the water column of eight stations(63 samples) around the Antarctic Peninsula of the Southern Ocean were investigated. Through pyrosequencing of the V3–V4hypervariable regions of the 16S ribosomal RNA gene, we characterized 4 720 089 valid reads representing 48 188operational taxonomic units(OTUs, 97% similarity). The community was dominated by the phyla Pseudomonadota(original name: Proteobacteria, 47%), Oxyphotobacteria(26%), and Bacteroidota(original name: Bacteroidetes, 18%), which comprised an average of 91% of the total OTUs in all samples. The prokaryotic community composition varied vertically within the water column. Water column prokaryotic communities exhibited a clear depth profile, with higher microbial richness and higher diversity observed with increasing water depth. Cluster analysis of the community composition of water column samples exhibited a similar trend with depth. Correlation with environmental factors suggested distinct variation in prokaryotic community composition with changes in depth, salinity, temperature and dissolved oxygen levels. Functional prediction showed presence of active nitrogen, sulphur and methane metabolic cycles along the vertical transect of the studied region. These results will improve our knowledge of prokaryotic diversity and community composition at different depth of water column for better understanding of the microbial ecology and nutrient cycles in Antarctic Peninsula region of the Southern Ocean.展开更多
In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it ...In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.展开更多
Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the labo...Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.展开更多
Fusarium ear rot(FER)is a destructive maize fungal disease worldwide.In this study,three tropical maize populations consisting of 874 inbred lines were used to perform genomewide association study(GWAS)and genomic pre...Fusarium ear rot(FER)is a destructive maize fungal disease worldwide.In this study,three tropical maize populations consisting of 874 inbred lines were used to perform genomewide association study(GWAS)and genomic prediction(GP)analyses of FER resistance.Broad phenotypic variation and high heritability for FER were observed,although it was highly influenced by large genotype-by-environment interactions.In the 874 inbred lines,GWAS with general linear model(GLM)identified 3034 single-nucleotide polymorphisms(SNPs)significantly associated with FER resistance at the P-value threshold of 1×10^(-5),the average phenotypic variation explained(PVE)by these associations was 3%with a range from 2.33%to 6.92%,and 49 of these associations had PVE values greater than 5%.The GWAS analysis with mixed linear model(MLM)identified 19 significantly associated SNPs at the P-value threshold of 1×10^(-4),the average PVE of these associations was 1.60%with a range from 1.39%to 2.04%.Within each of the three populations,the number of significantly associated SNPs identified by GLM and MLM ranged from 25 to 41,and from 5 to 22,respectively.Overlapping SNP associations across populations were rare.A few stable genomic regions conferring FER resistance were identified,which located in bins 3.04/05,7.02/04,9.00/01,9.04,9.06/07,and 10.03/04.The genomic regions in bins 9.00/01 and 9.04 are new.GP produced moderate accuracies with genome-wide markers,and relatively high accuracies with SNP associations detected from GWAS.Moderate prediction accuracies were observed when the training and validation sets were closely related.These results implied that FER resistance in maize is controlled by minor QTL with small effects,and highly influenced by the genetic background of the populations studied.Genomic selection(GS)by incorporating SNP associations detected from GWAS is a promising tool for improving FER resistance in maize.展开更多
LHCII is a crucial light-harvesting pigment/protein complex in photosystem II (PSII) supercomplex. It also participates in the light energy redistribution between photosystems and in the photoprotection via its revers...LHCII is a crucial light-harvesting pigment/protein complex in photosystem II (PSII) supercomplex. It also participates in the light energy redistribution between photosystems and in the photoprotection via its reversible dissociation with PSII and PSI (photosystem I). This reversible detachment of LHCII is regulated by phosphorylation of its own and PSII core protein. Under low light conditions, LHCII is phosphorylated and dissociated with PSII core protein complex and combined with PSI, which balances the excitation energy between PSII and PSI;Under high light environment, the phosphorylation of PSII core proteins makes LHCII detach from PSII. The dissociated LHCII presents in a free state, which involves in the thermal dissipation of excess excitation energy. During photodamage, dual phosphorylations of both PSII core proteins and LHCII complexes occur. The phosphorylation of D1 is conductive to the disintegration of photodamaged PSII and the cycle of repair. In this circumstance, the phosphorylation of LHCII is induced by reactive oxygen species (ROS) and then the phosphorylated LHCII migrates to PSI, into the repair cycle of damaged PSII. The ferredoxin (Fdr) and thioredoxin (Tdr) system may play a possible central role in the phosphorylation regulation on LHCII dissociation.展开更多
The two most important activities in maize breeding are the development of inbred lines with high values of general combining ability(GCA)and specific combining ability(SCA),and the identification of hybrids with high...The two most important activities in maize breeding are the development of inbred lines with high values of general combining ability(GCA)and specific combining ability(SCA),and the identification of hybrids with high yield potentials.Genomic selection(GS)is a promising genomic tool to perform selection on the untested breeding material based on the genomic estimated breeding values estimated from the genomic prediction(GP).In this study,GP analyses were carried out to estimate the performance of hybrids,GCA,and SCA for grain yield(GY)in three maize line-by-tester trials,where all the material was phenotyped in 10 to 11 multiple-location trials and genotyped with a mid-density molecular marker platform.Results showed that the prediction abilities for the performance of hybrids ranged from 0.59 to0.81 across all trials in the model including the additive effect of lines and testers.In the model including both additive and non-additive effects,the prediction abilities for the performance of hybrids were improved and ranged from 0.64 to 0.86 across all trials.The prediction abilities of the GCA for GY were low,ranging between-0.14 and 0.13 across all trials in the model including only inbred lines;the prediction abilities of the GCA for GY were improved and ranged from 0.49 to 0.55 across all trials in the model including both inbred lines and testers,while the prediction abilities of the SCA for GY were negative across all trials.The prediction abilities for GY between testers varied from-0.66 to 0.82;the performance of hybrids between testers is difficult to predict.GS offers the opportunity to predict the performance of new hybrids and the GCA of new inbred lines based on the molecular marker information,the total breeding cost could be reduced dramatically by phenotyping fewer multiple-location trials.展开更多
A theoretical framework of nonlinear flight control for a flexible air-breathing hypersonic vehicle(FAHV)is proposed in this paper.In order to suppress the system uncertainty and external disturbance,an uncertainty an...A theoretical framework of nonlinear flight control for a flexible air-breathing hypersonic vehicle(FAHV)is proposed in this paper.In order to suppress the system uncertainty and external disturbance,an uncertainty and disturbance estimator(UDE)based back-stepping control strategy is designed for a dynamic state-feedback controller to provide stable velocity and altitude tracking.Firstly,the longitudinal dynamics of FAHV is simplified into a closure loop form with lumped uncertainty and disturbance.Then the UDE is applied to estimate the lumped uncertainty and disturbance for the purpose of control input compensation.While a nonlinear tracking differentiator is introduced to solve the problem of“explosion of term”in the back-stepping control.The stability of the UDE-based control strategy is proved by using Lyapunov stability theorem.Finally,simulation results are presented to demonstrate the capacity of the proposed control strategy.展开更多
1.Objectives Chibi City is located along the key development axis of the Beijing-Guangzhou high-speed rail in Hubei Province,and is one of the key towns in the middle reaches of the Yangtze River in China.Karst ground...1.Objectives Chibi City is located along the key development axis of the Beijing-Guangzhou high-speed rail in Hubei Province,and is one of the key towns in the middle reaches of the Yangtze River in China.Karst ground subsidence,groundwater contamination,seasonal water shortage or water shortage are important environmental geological problems that restrict economic and social development in the region.Relying on the discovery of abundant geological heritage landscape resources of Chibi City(Ancient battlefield in the period of the Three Kingdoms,Yangloudong),geothermal resources(Wuhong Mountain hot spring),the discovery of natural mineral water rich in strontium and metasilicate provides more options for the development and utilization of geological resources in Chibi City.Strontium-rich mineral water can strengthen bones,protect hearts,soften blood vessels,and has the function of anti-oxidation,anti-aging and immunity enhancement.It is a kind of high-quality water that is very beneficial to human health.Therefore,identifying its distribution and potential is key to the development of strontium rich mineral water industry in Chibi City.展开更多
The effect of formed CH_3NH_3 at the heterojunction on properties of CH_3NH_3PbI_3 material is investigated based on experiment and theoretical calculation. Our calculation results show that the giant dielectric const...The effect of formed CH_3NH_3 at the heterojunction on properties of CH_3NH_3PbI_3 material is investigated based on experiment and theoretical calculation. Our calculation results show that the giant dielectric constant, anomalous hysteresis and long-lasting polarization for CH_3NH_3PbI_3 originate from the formed CH_3NH_3 at the heterojunction. It is found that the induced weak EPS by the reorientation of CH_3NH_3 sub-group along the built-in electric field enables us to effectively increase the ordering of entire lead-halide framework. In addition, the heterojunction has an advantage of channel separation between carrier transport and electron diffusion. These properties of the heterojunction are the main origin of the high efficiency of CH_3NH_3PbI_3 solar cells.展开更多
This paper proposes a hybrid peridynamic and classical continuum mechanical model for the high-temperature damage and fracture analysis of concrete structures.In this model,we introduce the thermal expansion into peri...This paper proposes a hybrid peridynamic and classical continuum mechanical model for the high-temperature damage and fracture analysis of concrete structures.In this model,we introduce the thermal expansion into peridynamics and then couple it with the thermoelasticity based on the Morphing method.In addition,a thermomechanical constitutive model of peridynamic bond is presented inspired by the classic Mazars model for the quasi-brittle damage evolution of concrete structures under high-temperature conditions.The validity and effectiveness of the proposed model are verified through two-dimensional numerical examples,in which the influence of temperature on the damage behavior of concrete structures is investigated.Furthermore,the thermal effects on the fracture path of concrete structures are analyzed by numerical results.展开更多
Strong light decreases the rate of photosynthesis and assimilates production of crop plants. Plants with different carbon reduction cycles respond differently to strong light stress. However, variation in photoinhibit...Strong light decreases the rate of photosynthesis and assimilates production of crop plants. Plants with different carbon reduction cycles respond differently to strong light stress. However, variation in photoinhibition in leaves with different photosynthetic characteristics in maize is not clear. In this experiment, we used the first leaves (with an incomplete C4 cycle) and fifth leaves (with a complete C4 cycle) of maize plants as well as the fifth leaves (C3 cycle) of tobacco plants as a reference to measure the photosynthetic rate (PN) and chlorophyll a parameters under strong light stress. During treatment, PN, the maximal fluorescence (Fm), the maximal quantum yield of PSII photochemistry (Fv/Fm), and the number of active photosystem II (PSII) reaction centers per excited cross-section (RC/CSm) declined dramatically in all three types of leaves but to different degrees. PN, Fm, Fv/Fm, and RC/CSm were less inhibited by strong light in C4 leaves. The results showed that maize C4 leaves with higher rates of photosynthesis are more tolerant to strong light stress than incomplete C4 leaves, and the carbon reduction cycle is more important to photoprotection in C4 leaves, while state transition is critical in incomplete C4 leaves.展开更多
Malate is the first stable product after CO2 is fixed in NADP-dependent malic enzyme (NADP-ME) type of C4 plants, which transfers CO2 and the reducing equivalent from mesophyll cell (MC) to vascular bundle sheath cell...Malate is the first stable product after CO2 is fixed in NADP-dependent malic enzyme (NADP-ME) type of C4 plants, which transfers CO2 and the reducing equivalent from mesophyll cell (MC) to vascular bundle sheath cell (BSC) chloroplasts and affects the redox state of BSC. The aim of this experiment is to investigate the effect of exogenous malate on the activity of photosystem II (PS II) in C4 and C3 plants. The leaf discs from the 5th fully expanded leaves of maize (NADP-ME type C4 plants) and the 10th fully expanded leaves of tobacco (C3 plants) were treated with malate of 50, 100 μM and the chlorophyll fluorescence parameters were measured. Malate treatments decreased the photochemical reaction efficiency (FV/FM) in maize leaves, as a result of rising in initial fluorescence (FO) and decreasing in maximal fluorescence (FM). The number of active PS II reaction center (RC) per excited cross section (RC/CS) declined in malate-treated maize, suggesting that malate inactivated PS II RC. Malate treatments also increased Wk, representing the severity of oxygen-evolving complex (OEC) damage, and decreased the rate of photosynthetic oxygen evolution. We conclude that exogenous malate regulates the activity and structure of PS II in C4 plant maize. No significant changes in the activity of PS II were observed in malate-treated C3 plant tobacco. It is suggested that the short term malate treatment will inhibit PS II of leaves which have C4 anatomy and C4 enzymes.展开更多
Background The thirteen-valent pneumococcal conjugate vaccine(PCV13)is not included in the national immu-nization program and is administered voluntarily with informed consent in China.In preparation for assessing the...Background The thirteen-valent pneumococcal conjugate vaccine(PCV13)is not included in the national immu-nization program and is administered voluntarily with informed consent in China.In preparation for assessing the impact of pilot introduction in Hainan Province,we conducted a carriage study among children under 5 years of age from four locations in Hainan Province,China.Methods From March to June 2022,nasopharyngeal(NP)swabs,collected from healthy children aged younger than 59 months who lived in the 4 different locations(Haikou,Wanning,Baisha and Qiongzhong)in Hainan Province,were tested for pneumococcus using conventional culture.Pneumococcal isolates were serotyped using the Quel-lung reaction.Risk factors associated with pneumococcal colonization were assessed using univariate analysis and multivariable logistic regression adjusting for age,daycare attendance and other factors.Results Pneumococcus was isolated in 710(30.4%)of the 2333 children enrolled.Of 737 pneumococci,29 serotypes were identifed;60.9%were PCV13 serotypes;the most common vaccine serotypes were 6B(20.4%),19F(13.0%),6A(11.9%)and 23F(6.1%);and the most common nonvaccine serotypes were 23A(12.9%),34(6.1%)and nontypeable(NT)pneumococci(5.6%).Children vaccinated with PCV13 had lower carriage(17.7%vs 32.5%;P=0.0001)and fewer PCV13 serotypes(41.9%vs 62.7%;P=0.0017)compared to unimmunized children.After adjustment,NP carriage Was higher among children attending daycare(aOR=2.3,95%CI:1.7-3.2),living in rural areas(aOR=1.4,95%CI:1.1-1.8),living with siblings(aOR=1.3,95%CI:1.0-1.6)and whose mothers had completed senior high/technical sec-ondary school(aOR=1.5,95%CI:1.1-2.0).In contrast,completion of 3-4 doses of PCV13 were associated with a lower carriage rate(aOR=0.6,95%CI:0.4-0.9).Conclusions We established the baseline of pneumococcal carriage,serotype distribution and PCV13 immuni-zation rates among healthy children under 5 years of age in Hainan Province,prior to the introduction of PCV13 into the national immunization program.The high proportion of PCV13 serotypes suggests that PCV13 introduction will likely have a substantial impact on pneumococcal carriage in Hainan Province.展开更多
Mutations or abnormal expression of oncogenes and tumor suppressor genes are known to cause cancer.Recent studies have shown that epigenetic modifications are key drivers of cancer development and progression.Neverthe...Mutations or abnormal expression of oncogenes and tumor suppressor genes are known to cause cancer.Recent studies have shown that epigenetic modifications are key drivers of cancer development and progression.Nevertheless,the mechanistic role of epigenetic dysregulation in the tumor microenvironment is not fully understood.Here,we reviewed the role of epigenetic modifications of cancer cells and non-cancer cells in the tumor microenvironment and recent research advances in cancer epigenetic drugs.In addition,we discussed the great potential of epigenetic combination therapies in the clinical treatment of cancer.However,there are still some challenges in the field of cancer epigenetics,such as epigenetic tumor heterogeneity,epigenetic drug heterogeneity,and crosstalk between epigenetics,proteomics,metabolomics,and other omics,which may be the focus and difficulty of cancer treatment in the future.In conclusion,epigenetic modifications in the tumor microenvironment are essential for future epigenetic drug development and the comprehensive treatment of cancer.Epigenetic combination therapy may be a novel strategy for the future clinical treatment of cancer.展开更多
Macrophages and neutrophils are key components of myeloid cells and play critical roles in innate immune responses,organ formation,and tissue homeostasis.The integrity of their functions heavily relies on the generati...Macrophages and neutrophils are key components of myeloid cells and play critical roles in innate immune responses,organ formation,and tissue homeostasis.The integrity of their functions heavily relies on the generation of a proper number of mature macrophages and neutrophils through embryonic and adult myelopoiesis.In mammalian adult myelopoiesis,oligopotent common myeloid progenitors(CMPs)are known to be the earliest myeloid progenitors,which give rise to granulocyte-macrophage progenitors(GMPs),subsequently differentiate into unipotent neutrophil and macrophage precursors,and finally,mature macrophages and neutrophils(Orkin and Zon,2008).In contrast,the ontogeny of embryonic myelopoiesis and the mechanism underlying the formation of macrophages and neutrophils remainless understood.展开更多
Carbon-based perovskite solar cells(C-PSCs)are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability.However,the fabrication of high-performance C-PSCs wit...Carbon-based perovskite solar cells(C-PSCs)are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability.However,the fabrication of high-performance C-PSCs with large-area electrodes remains challenging.In this work,we propose a novel playdough-like graphite putty as top electrode in the perovskite devices.This electrode with soft nature can form good contact with the holetransporting layer and the conductive substrate at room temperature by a simple pressing technique,which facilitates the fabrication of both small-area devices and perovskite solar modules.In this preliminary research,the corresponding small devices and modules can achieve efficiencies of 20.29%(~0.15 cm^(2))and 16.01%(~10 cm^(2)),respectively.Moreover,we analyze the limitations of the optical and electrical properties of this playdough-like graphite electrode on the device performance,suggesting a direction for further improvement of C-PSCs in the future.展开更多
基金supported by the projects of the China Geological Survey(DD20221729,DD20190291)Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).
文摘Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.
基金supported by the National Key R&D Program of China(2022YFF1000100)Technology Application and Development Program for Rapid Propagation of Cow Breeding(20211117000005)+2 种基金Basic Science(Agricultural Biology)Research Center of Shaanxi(K3030922016)Ningxia Hui Autonomous Region Key R&D Projects(2021BEF01001)Natural Science Basic Research Program of Shaanxi(2022JQ-171)。
文摘The placenta plays a crucial role in successful mammalian reproduction.Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons,essential for full-term fetal development.The cow placenta harbors at least two trophoblast cell populations:uninucleate(UNC)and binucleate(BNC)cells.However,the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches,and the molecular mechanisms governing trophoblast differentiation and functionalization.To fill this knowledge gap,we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation,attaining high-resolution,spatially resolved gene expression profiles.Based on clustering and cell marker gene expression analyses,key transcription factors,including YBX1 and NPAS2,were shown to regulate the heterogeneity of trophoblast cell subpopulations.Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment.Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation.Additionally,spatial modules and co-variant genes that help shape specific tissue structures were identified.Together,these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFB3608000 and 2022YFA1204900)the National Natural Science Foundation of China (Grant Nos. 12222413 and 12074205)+2 种基金the Natural Science Foundation of Shanghai (Grant Nos. 23ZR1482200 and 22ZR1473300)the Natural Science Foundation of Zhejiang Province (Grant No. LQ21A040004)the funding of Ningbo University (Grant No. LJ2024003)。
文摘Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.
基金The Impact and Response of Antarctic Seas to Climate Change under contract No. IRFSOCC2020-2022。
文摘Prokaryotic diversity and community composition in the water column of eight stations(63 samples) around the Antarctic Peninsula of the Southern Ocean were investigated. Through pyrosequencing of the V3–V4hypervariable regions of the 16S ribosomal RNA gene, we characterized 4 720 089 valid reads representing 48 188operational taxonomic units(OTUs, 97% similarity). The community was dominated by the phyla Pseudomonadota(original name: Proteobacteria, 47%), Oxyphotobacteria(26%), and Bacteroidota(original name: Bacteroidetes, 18%), which comprised an average of 91% of the total OTUs in all samples. The prokaryotic community composition varied vertically within the water column. Water column prokaryotic communities exhibited a clear depth profile, with higher microbial richness and higher diversity observed with increasing water depth. Cluster analysis of the community composition of water column samples exhibited a similar trend with depth. Correlation with environmental factors suggested distinct variation in prokaryotic community composition with changes in depth, salinity, temperature and dissolved oxygen levels. Functional prediction showed presence of active nitrogen, sulphur and methane metabolic cycles along the vertical transect of the studied region. These results will improve our knowledge of prokaryotic diversity and community composition at different depth of water column for better understanding of the microbial ecology and nutrient cycles in Antarctic Peninsula region of the Southern Ocean.
基金supported by the National Key R&D Program of China (Grant Nos. 2020YFA0308900 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12074163, 12134020, 11974157, 12104255, 12004159, and 12374146)+8 种基金Guangdong Provincial Key Laboratory for Computational Science and Material Design (Grant No. 2019B030301001)the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. ZDSYS20190902092905285 and KQTD20190929173815000)Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2022B1515020046, 2021B1515130007, 2022A1515011915, 2019A1515110712, and 2022B1515130005)Shenzhen Science and Technology Program (Grant Nos. RCJC20221008092722009 and RCBS20210706092218039)the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2019ZT08C044)the beam time awarded by Australia’s Nuclear Science and Technology Organisation (ANSTO) (Grant No. P8130)the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex (J-PARC) was performed under a user program (Proposal No. 2019B0140)performed at the Hiroshima Synchrotron Radiation Center (HiSOR) of Japan (Grant Nos. 22BG023 and 22BG029)Shanghai Synchrotron Radiation Facility (SSRF) BL03U (Grant No. 2022-SSRF-PT-020848)。
文摘In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.YX2010-20)the National Natural Science Foundation of China(No.31570708,No.30901162)the Open Projects Foundation of Key Laboratory of Soil and Water Conservation&Desertification Combat(Beijing Forestry University),Ministry of Education of China(No.201002)
文摘Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.
基金The authors gratefully acknowledge the financial support from the MasAgro project funded by Mexico’s Secretary of Agriculture and Rural Development(SADER),the Genomic Open-source Breeding Informatics Initiative(GOBII)(grant number OPP1093167)supported by the Bill&Melinda Gates Foundation,and the CGIAR Research Program(CRP)on maize(MAIZE)MAIZE receives W1&W2 support from the Governments of Australia,Belgium,Canada,China,France,India,Japan,the Republic of Korea,Mexico,Netherlands,New Zealand,Norway,Sweden,Switzerland,the United Kingdom,USA,and the World Bank+2 种基金The authors also thank the National Natural Science Foundation of China(grant number 31801442)the CIMMYT–China Specialty Maize Research Center Project funded by the Shanghai Municipal Finance Bureauthe China Scholarship Council.
文摘Fusarium ear rot(FER)is a destructive maize fungal disease worldwide.In this study,three tropical maize populations consisting of 874 inbred lines were used to perform genomewide association study(GWAS)and genomic prediction(GP)analyses of FER resistance.Broad phenotypic variation and high heritability for FER were observed,although it was highly influenced by large genotype-by-environment interactions.In the 874 inbred lines,GWAS with general linear model(GLM)identified 3034 single-nucleotide polymorphisms(SNPs)significantly associated with FER resistance at the P-value threshold of 1×10^(-5),the average phenotypic variation explained(PVE)by these associations was 3%with a range from 2.33%to 6.92%,and 49 of these associations had PVE values greater than 5%.The GWAS analysis with mixed linear model(MLM)identified 19 significantly associated SNPs at the P-value threshold of 1×10^(-4),the average PVE of these associations was 1.60%with a range from 1.39%to 2.04%.Within each of the three populations,the number of significantly associated SNPs identified by GLM and MLM ranged from 25 to 41,and from 5 to 22,respectively.Overlapping SNP associations across populations were rare.A few stable genomic regions conferring FER resistance were identified,which located in bins 3.04/05,7.02/04,9.00/01,9.04,9.06/07,and 10.03/04.The genomic regions in bins 9.00/01 and 9.04 are new.GP produced moderate accuracies with genome-wide markers,and relatively high accuracies with SNP associations detected from GWAS.Moderate prediction accuracies were observed when the training and validation sets were closely related.These results implied that FER resistance in maize is controlled by minor QTL with small effects,and highly influenced by the genetic background of the populations studied.Genomic selection(GS)by incorporating SNP associations detected from GWAS is a promising tool for improving FER resistance in maize.
文摘LHCII is a crucial light-harvesting pigment/protein complex in photosystem II (PSII) supercomplex. It also participates in the light energy redistribution between photosystems and in the photoprotection via its reversible dissociation with PSII and PSI (photosystem I). This reversible detachment of LHCII is regulated by phosphorylation of its own and PSII core protein. Under low light conditions, LHCII is phosphorylated and dissociated with PSII core protein complex and combined with PSI, which balances the excitation energy between PSII and PSI;Under high light environment, the phosphorylation of PSII core proteins makes LHCII detach from PSII. The dissociated LHCII presents in a free state, which involves in the thermal dissipation of excess excitation energy. During photodamage, dual phosphorylations of both PSII core proteins and LHCII complexes occur. The phosphorylation of D1 is conductive to the disintegration of photodamaged PSII and the cycle of repair. In this circumstance, the phosphorylation of LHCII is induced by reactive oxygen species (ROS) and then the phosphorylated LHCII migrates to PSI, into the repair cycle of damaged PSII. The ferredoxin (Fdr) and thioredoxin (Tdr) system may play a possible central role in the phosphorylation regulation on LHCII dissociation.
基金financial support of the Shanghai Agriculture Applied Technology Development Program of China(Z20190101)the Harvest Plus Project+7 种基金the Genomic Opensource Breeding Informatics Initiative(GOBII)(OPP1093167)supported by the Bill&Melinda Gates Foundationthe CGIAR Research Program(CRP)on MAIZEW1&W2 support from the Governments of Australia,Belgium,Canada,China,France,India,Japan,Republic of Korea,Mexico,the Netherlands,New Zealand,Norway,Sweden,Switzerland,the United Kingdom,the United States,and the World Bankgrants from the National Key Research and Development Program of China(2016YFD0101803)the National Natural Science Foundation of China(31801442)Shenyang City Key Laboratory of Maize Genomic Selection,Liaoning Province Key Scientific and Technological Research and Development Project(2011208001)the CIMMYT-China Specialty Maize Research Center Project funded by the Shanghai Municipal Finance Bureau(KF201802)the Chinese Scholarship Council。
文摘The two most important activities in maize breeding are the development of inbred lines with high values of general combining ability(GCA)and specific combining ability(SCA),and the identification of hybrids with high yield potentials.Genomic selection(GS)is a promising genomic tool to perform selection on the untested breeding material based on the genomic estimated breeding values estimated from the genomic prediction(GP).In this study,GP analyses were carried out to estimate the performance of hybrids,GCA,and SCA for grain yield(GY)in three maize line-by-tester trials,where all the material was phenotyped in 10 to 11 multiple-location trials and genotyped with a mid-density molecular marker platform.Results showed that the prediction abilities for the performance of hybrids ranged from 0.59 to0.81 across all trials in the model including the additive effect of lines and testers.In the model including both additive and non-additive effects,the prediction abilities for the performance of hybrids were improved and ranged from 0.64 to 0.86 across all trials.The prediction abilities of the GCA for GY were low,ranging between-0.14 and 0.13 across all trials in the model including only inbred lines;the prediction abilities of the GCA for GY were improved and ranged from 0.49 to 0.55 across all trials in the model including both inbred lines and testers,while the prediction abilities of the SCA for GY were negative across all trials.The prediction abilities for GY between testers varied from-0.66 to 0.82;the performance of hybrids between testers is difficult to predict.GS offers the opportunity to predict the performance of new hybrids and the GCA of new inbred lines based on the molecular marker information,the total breeding cost could be reduced dramatically by phenotyping fewer multiple-location trials.
基金Supported by National Natural Science Foundation of China(11672235)。
文摘A theoretical framework of nonlinear flight control for a flexible air-breathing hypersonic vehicle(FAHV)is proposed in this paper.In order to suppress the system uncertainty and external disturbance,an uncertainty and disturbance estimator(UDE)based back-stepping control strategy is designed for a dynamic state-feedback controller to provide stable velocity and altitude tracking.Firstly,the longitudinal dynamics of FAHV is simplified into a closure loop form with lumped uncertainty and disturbance.Then the UDE is applied to estimate the lumped uncertainty and disturbance for the purpose of control input compensation.While a nonlinear tracking differentiator is introduced to solve the problem of“explosion of term”in the back-stepping control.The stability of the UDE-based control strategy is proved by using Lyapunov stability theorem.Finally,simulation results are presented to demonstrate the capacity of the proposed control strategy.
基金This study was supported by China Geological Survey projects“Multi-Element Urban Geological Survey of Wuhan Project”(DD20190282)“1∶50000 Environmental Geological Survey Along the High-speed Rail Line in Xianning-Yueyang and Nanchang-Huaihua Sections of the Middle Reaches of the Yangtze River Project”(DD20160248).
文摘1.Objectives Chibi City is located along the key development axis of the Beijing-Guangzhou high-speed rail in Hubei Province,and is one of the key towns in the middle reaches of the Yangtze River in China.Karst ground subsidence,groundwater contamination,seasonal water shortage or water shortage are important environmental geological problems that restrict economic and social development in the region.Relying on the discovery of abundant geological heritage landscape resources of Chibi City(Ancient battlefield in the period of the Three Kingdoms,Yangloudong),geothermal resources(Wuhong Mountain hot spring),the discovery of natural mineral water rich in strontium and metasilicate provides more options for the development and utilization of geological resources in Chibi City.Strontium-rich mineral water can strengthen bones,protect hearts,soften blood vessels,and has the function of anti-oxidation,anti-aging and immunity enhancement.It is a kind of high-quality water that is very beneficial to human health.Therefore,identifying its distribution and potential is key to the development of strontium rich mineral water industry in Chibi City.
基金Supported by the National Natural Science Foundation of China under Grant No 61875235the Ph.D. Programs Foundation of Ministry of Education of China under Grant No 20130009110008the Beijing Municipal Education Commission Project under Grant No KM201210015008
文摘The effect of formed CH_3NH_3 at the heterojunction on properties of CH_3NH_3PbI_3 material is investigated based on experiment and theoretical calculation. Our calculation results show that the giant dielectric constant, anomalous hysteresis and long-lasting polarization for CH_3NH_3PbI_3 originate from the formed CH_3NH_3 at the heterojunction. It is found that the induced weak EPS by the reorientation of CH_3NH_3 sub-group along the built-in electric field enables us to effectively increase the ordering of entire lead-halide framework. In addition, the heterojunction has an advantage of channel separation between carrier transport and electron diffusion. These properties of the heterojunction are the main origin of the high efficiency of CH_3NH_3PbI_3 solar cells.
基金the financial support received from the National Natural Science Foundation of China(11872016)National Key Laboratory of Shock Wave and Detonation Physics(JCKYS2021212003)+1 种基金Fundamental Research Funds for the Central Universities(DUT20LAB203)Key Research and Development Project of Liaoning Province(2020JH2/10500003).
文摘This paper proposes a hybrid peridynamic and classical continuum mechanical model for the high-temperature damage and fracture analysis of concrete structures.In this model,we introduce the thermal expansion into peridynamics and then couple it with the thermoelasticity based on the Morphing method.In addition,a thermomechanical constitutive model of peridynamic bond is presented inspired by the classic Mazars model for the quasi-brittle damage evolution of concrete structures under high-temperature conditions.The validity and effectiveness of the proposed model are verified through two-dimensional numerical examples,in which the influence of temperature on the damage behavior of concrete structures is investigated.Furthermore,the thermal effects on the fracture path of concrete structures are analyzed by numerical results.
文摘Strong light decreases the rate of photosynthesis and assimilates production of crop plants. Plants with different carbon reduction cycles respond differently to strong light stress. However, variation in photoinhibition in leaves with different photosynthetic characteristics in maize is not clear. In this experiment, we used the first leaves (with an incomplete C4 cycle) and fifth leaves (with a complete C4 cycle) of maize plants as well as the fifth leaves (C3 cycle) of tobacco plants as a reference to measure the photosynthetic rate (PN) and chlorophyll a parameters under strong light stress. During treatment, PN, the maximal fluorescence (Fm), the maximal quantum yield of PSII photochemistry (Fv/Fm), and the number of active photosystem II (PSII) reaction centers per excited cross-section (RC/CSm) declined dramatically in all three types of leaves but to different degrees. PN, Fm, Fv/Fm, and RC/CSm were less inhibited by strong light in C4 leaves. The results showed that maize C4 leaves with higher rates of photosynthesis are more tolerant to strong light stress than incomplete C4 leaves, and the carbon reduction cycle is more important to photoprotection in C4 leaves, while state transition is critical in incomplete C4 leaves.
文摘Malate is the first stable product after CO2 is fixed in NADP-dependent malic enzyme (NADP-ME) type of C4 plants, which transfers CO2 and the reducing equivalent from mesophyll cell (MC) to vascular bundle sheath cell (BSC) chloroplasts and affects the redox state of BSC. The aim of this experiment is to investigate the effect of exogenous malate on the activity of photosystem II (PS II) in C4 and C3 plants. The leaf discs from the 5th fully expanded leaves of maize (NADP-ME type C4 plants) and the 10th fully expanded leaves of tobacco (C3 plants) were treated with malate of 50, 100 μM and the chlorophyll fluorescence parameters were measured. Malate treatments decreased the photochemical reaction efficiency (FV/FM) in maize leaves, as a result of rising in initial fluorescence (FO) and decreasing in maximal fluorescence (FM). The number of active PS II reaction center (RC) per excited cross section (RC/CS) declined in malate-treated maize, suggesting that malate inactivated PS II RC. Malate treatments also increased Wk, representing the severity of oxygen-evolving complex (OEC) damage, and decreased the rate of photosynthetic oxygen evolution. We conclude that exogenous malate regulates the activity and structure of PS II in C4 plant maize. No significant changes in the activity of PS II were observed in malate-treated C3 plant tobacco. It is suggested that the short term malate treatment will inhibit PS II of leaves which have C4 anatomy and C4 enzymes.
基金This research was funded by Bill&Melinda Gates Foundation(No.INV-034554)Beijing Municipal Natural Science Foundation(No.L202007)Special funds for the construction of high-level public health technical personnel from Beijing Municipal Health Commission(No.2022-3-01-021).
文摘Background The thirteen-valent pneumococcal conjugate vaccine(PCV13)is not included in the national immu-nization program and is administered voluntarily with informed consent in China.In preparation for assessing the impact of pilot introduction in Hainan Province,we conducted a carriage study among children under 5 years of age from four locations in Hainan Province,China.Methods From March to June 2022,nasopharyngeal(NP)swabs,collected from healthy children aged younger than 59 months who lived in the 4 different locations(Haikou,Wanning,Baisha and Qiongzhong)in Hainan Province,were tested for pneumococcus using conventional culture.Pneumococcal isolates were serotyped using the Quel-lung reaction.Risk factors associated with pneumococcal colonization were assessed using univariate analysis and multivariable logistic regression adjusting for age,daycare attendance and other factors.Results Pneumococcus was isolated in 710(30.4%)of the 2333 children enrolled.Of 737 pneumococci,29 serotypes were identifed;60.9%were PCV13 serotypes;the most common vaccine serotypes were 6B(20.4%),19F(13.0%),6A(11.9%)and 23F(6.1%);and the most common nonvaccine serotypes were 23A(12.9%),34(6.1%)and nontypeable(NT)pneumococci(5.6%).Children vaccinated with PCV13 had lower carriage(17.7%vs 32.5%;P=0.0001)and fewer PCV13 serotypes(41.9%vs 62.7%;P=0.0017)compared to unimmunized children.After adjustment,NP carriage Was higher among children attending daycare(aOR=2.3,95%CI:1.7-3.2),living in rural areas(aOR=1.4,95%CI:1.1-1.8),living with siblings(aOR=1.3,95%CI:1.0-1.6)and whose mothers had completed senior high/technical sec-ondary school(aOR=1.5,95%CI:1.1-2.0).In contrast,completion of 3-4 doses of PCV13 were associated with a lower carriage rate(aOR=0.6,95%CI:0.4-0.9).Conclusions We established the baseline of pneumococcal carriage,serotype distribution and PCV13 immuni-zation rates among healthy children under 5 years of age in Hainan Province,prior to the introduction of PCV13 into the national immunization program.The high proportion of PCV13 serotypes suggests that PCV13 introduction will likely have a substantial impact on pneumococcal carriage in Hainan Province.
基金the National Natural Science Foundation of China(No.82274396,82204961).
文摘Mutations or abnormal expression of oncogenes and tumor suppressor genes are known to cause cancer.Recent studies have shown that epigenetic modifications are key drivers of cancer development and progression.Nevertheless,the mechanistic role of epigenetic dysregulation in the tumor microenvironment is not fully understood.Here,we reviewed the role of epigenetic modifications of cancer cells and non-cancer cells in the tumor microenvironment and recent research advances in cancer epigenetic drugs.In addition,we discussed the great potential of epigenetic combination therapies in the clinical treatment of cancer.However,there are still some challenges in the field of cancer epigenetics,such as epigenetic tumor heterogeneity,epigenetic drug heterogeneity,and crosstalk between epigenetics,proteomics,metabolomics,and other omics,which may be the focus and difficulty of cancer treatment in the future.In conclusion,epigenetic modifications in the tumor microenvironment are essential for future epigenetic drug development and the comprehensive treatment of cancer.Epigenetic combination therapy may be a novel strategy for the future clinical treatment of cancer.
基金supported by grants from the National Natural Science Foundation of China/Research Grants Council Joint Research Scheme(31961160726)the National Key Research and Development Program of China(2018YFA0800200)+1 种基金the Major Program of Shenzhen Bay Laboratory(S201101002)the Research Grants Council of Hong Kong(RGC/NFSC N_HKUST603/19,16102022,16101621,T13-605/18-W,T13-602/21-N).
文摘Macrophages and neutrophils are key components of myeloid cells and play critical roles in innate immune responses,organ formation,and tissue homeostasis.The integrity of their functions heavily relies on the generation of a proper number of mature macrophages and neutrophils through embryonic and adult myelopoiesis.In mammalian adult myelopoiesis,oligopotent common myeloid progenitors(CMPs)are known to be the earliest myeloid progenitors,which give rise to granulocyte-macrophage progenitors(GMPs),subsequently differentiate into unipotent neutrophil and macrophage precursors,and finally,mature macrophages and neutrophils(Orkin and Zon,2008).In contrast,the ontogeny of embryonic myelopoiesis and the mechanism underlying the formation of macrophages and neutrophils remainless understood.
基金the financial support from the National Natural Science Foundation of China(91963209 and 52002303).
文摘Carbon-based perovskite solar cells(C-PSCs)are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability.However,the fabrication of high-performance C-PSCs with large-area electrodes remains challenging.In this work,we propose a novel playdough-like graphite putty as top electrode in the perovskite devices.This electrode with soft nature can form good contact with the holetransporting layer and the conductive substrate at room temperature by a simple pressing technique,which facilitates the fabrication of both small-area devices and perovskite solar modules.In this preliminary research,the corresponding small devices and modules can achieve efficiencies of 20.29%(~0.15 cm^(2))and 16.01%(~10 cm^(2)),respectively.Moreover,we analyze the limitations of the optical and electrical properties of this playdough-like graphite electrode on the device performance,suggesting a direction for further improvement of C-PSCs in the future.