Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves...Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.展开更多
The rigid structure of the traditional relational database leads to data redundancy,which seriously affects the efficiency of the data query and cannot effectively manage massive data.To solve this problem,we use dist...The rigid structure of the traditional relational database leads to data redundancy,which seriously affects the efficiency of the data query and cannot effectively manage massive data.To solve this problem,we use distributed storage and parallel computing technology to query RDF data.In order to achieve efficient storage and retrieval of large-scale RDF data,we combine the respective advantage of the storage model of the relational database and the distributed query.To overcome the disadvantages of storing and querying RDF data,we design and implement a breadth-first path search algorithm based on the keyword query on a distributed platform.We conduct the LUBM query statements respectively with the selected data sets.In experiments,we compare query response time in different conditions to evaluate the feasibility and correctness of our approaches.The results show that the proposed scheme can reduce the storage cost and improve query efficiency.展开更多
基金This paper is financially supported by the National Natural Science Foundation of China(Grant Nos.52074263 and 52034007)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_2332).
文摘Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.
基金This work is supported in part by National Natural Science Foundation of China(61728204)Innovation Funding(NJ20160028,NT2018027,NT2018028,NS2018057)+1 种基金Aeronautical Science Foundation of China(2016551500)State Key Laboratory for smart grid protection and operation control Foundation,Association of Chinese Graduate Education(ACGE).
文摘The rigid structure of the traditional relational database leads to data redundancy,which seriously affects the efficiency of the data query and cannot effectively manage massive data.To solve this problem,we use distributed storage and parallel computing technology to query RDF data.In order to achieve efficient storage and retrieval of large-scale RDF data,we combine the respective advantage of the storage model of the relational database and the distributed query.To overcome the disadvantages of storing and querying RDF data,we design and implement a breadth-first path search algorithm based on the keyword query on a distributed platform.We conduct the LUBM query statements respectively with the selected data sets.In experiments,we compare query response time in different conditions to evaluate the feasibility and correctness of our approaches.The results show that the proposed scheme can reduce the storage cost and improve query efficiency.