期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical simulation to evaluate gas diffusion of turbulent flow in mine ventilation system 被引量:11
1
作者 arif widiatmojo Kyuro Sasaki +4 位作者 Nuhindro Priagung Widodo Yuichi Sugai Johannes Sinaga Haris Yusuf 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期349-355,共7页
Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diff... Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diffusion of gas in turbulent bulk flow by utilizing the tracer gas data. This paper discussed about the measurement using tracer gas technique in Cibaliung Underground Mine, Indonesia and the evaluation of effective axial diffusion coefficient, E, by numerical simulation. In addition, a scheme to treat network flow in mine ventilation system was also proposed. The effective axial diffusion coefficient for each airway was evaluated based on Taylor's theoretical equation. It is found that the evaluated diffusion coefficient agrees well with Taylor's equation by considering that the wall friction factor, f, is higher than those for smooth pipe flow. It also shows that the value of effective diffusion coefficient can be inherently determined and the value is constant when matching with other measurements. Furthermore, there are possibilities to utilize the tracer gas measurement data to evaluate the airway friction factors. 展开更多
关键词 Tracer gas Effective axial diffusion coefficient Mine ventilation Numerical simulation
下载PDF
Experiments Using Capillary Mat as Ground Heat Exchanger for Ground Source Heat Pump Heating Application
2
作者 arif widiatmojo Shrestha Gaurav +5 位作者 Takeshi Ishihara Akira Tomigashi Kasumi Yasukawa Youhei Uchida Shohei Kaneko Mayumi Yoshioka 《Energy and Power Engineering》 2019年第11期363-378,共16页
The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, ... The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, the major obstacle hindering the utilization of this technology is the high initial cost, especially for the installation of ground coupled heat exchanger. The horizontal closed-loop system offers lower installation cost, as it requires no vertical borehole construction. Instead, the heat exchangers can be installed in shallow trenches that may be excavated, by small excavator or even by human labor. This paper presents the comparison of two different heat exchangers, namely, the capillary mat and the widely used slinky pipe. Both heat exchangers are connected to a heat pump, where continuous heating tests were carried out for 165 hours (~7 days) for each configuration. The purpose of this research is to show the performance of capillary mat in comparison to slinky pipe. Despite during the entire test for capillary mat required 6% higher electricity consumption, compared to slinky heat exchanger, the results still suggest the potential use of capillary mat as alternative to slinky heat exchanger. Additionally, the results also highlight the high hydraulic resistance of installed capillary mat heat exchangers may become the major disadvantage of the capillary mat. 展开更多
关键词 HORIZONTAL HEAT EXCHANGER Ground Source HEAT PUMP CAPILLARY MAT
下载PDF
Discrete Tracer Point Method to Evaluate Turbulent Diffusion in Circular Pipe Flow
3
作者 arif widiatmojo Kyuro Sasaki +1 位作者 Nuhindro Priagung Widodo Yuichi Sugai 《Journal of Flow Control, Measurement & Visualization》 2013年第2期57-68,共12页
Diffusion of a solute in turbulent flows through a circular pipe or tunnel is an important aspect of environmental safety. In this study, the diffusion coefficient of turbulent flow in circular pipe has been simulated... Diffusion of a solute in turbulent flows through a circular pipe or tunnel is an important aspect of environmental safety. In this study, the diffusion coefficient of turbulent flow in circular pipe has been simulated by the Discrete Tracer Point Method (DTPM). The DTPM is a Lagrangian numerical method by a number of imaginary point displacement which satisfy turbulent mixing by velocity fluctuations, Reynolds stress, average velocity profile and a turbulent stochastic model. Numerical simulation results of points’ distribution by DTPM have been compared with the analytical solution for turbulent plug-flow. For the case of turbulent circular pipe flow, the appropriate DTPM calculation time step has been investigated using a constantβ, which represents the ratio between average mixing lengths over diameter of circular pipe. The evaluated values of diffusion coefficient by DTPM have been found to be in good agreement with Taylor’s analytical equation for turbulent circular pipe flow by givingβ=0.04 to 0.045. Further, history matching of experimental tracer gas measurement through turbulent smooth-straight pipe flow has been presented and the results showed good agreement. 展开更多
关键词 DISCRETE TRACER Point Method (DTPM) TURBULENT Diffusion PIPE Numerical Simulation AIRFLOW
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部