期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Thermal performance and entropy generation for nanofluid jet injection on a ribbed microchannel with oscillating heat flux: Investigation of the first and second laws of thermodynamics
1
作者 Yu-Liang Sun Davood Toghraie +4 位作者 Omid Ali Akbari Farzad Pourfattah as’ad alizadeh Navid Ghajari Mehran Aghajani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期450-464,共15页
In current numerical study,forced flow and heat transfer of water/NDG(Nitrogen-doped graphene)nanofluid in nanoparticles mass fractions(φ)of 0,2%and 4%at Reynolds numbers(Re)of 10,50,100 and 150 are simulated in stea... In current numerical study,forced flow and heat transfer of water/NDG(Nitrogen-doped graphene)nanofluid in nanoparticles mass fractions(φ)of 0,2%and 4%at Reynolds numbers(Re)of 10,50,100 and 150 are simulated in steady states.Studied geometry is a two-dimensional microchannel under the influence of nanofluid jet injection.Temperature of inlet fluid equals with Tc=293 K and hot source of microchannel is under the influence of oscillating heat flux.Also,in this research,the effect of the variations of attack angle of triangular rib(15°,30°,45°and 60°)on laminar nanofluid flow behavior inside the studied rectangular geometry with the ratio of L/H=28 and nanofluid jet injection is investigated.Obtained results indicate that the increase of Reynolds number,nanoparticles mass fraction and attack angle of rib leads to the increase of pressure drop.By increasing fluid viscosity,momentum depreciation of fluid in collusion with microchannel surfaces enhances.Also,the increase of attack angle of rib at higher Reynolds numbers has a great effect on this coefficient.At low Reynolds numbers,due to slow motion of fluid,variations of attack angle of rib,especially in angles of 30°,45°and 60°are almost similar.By increasing fluid velocity,the effect of the variations of attack angle on pressure drop becomes significant and pressure drop figures act differently.In general,by using heat transfer enhancement methods in studied geometry,heat transfer increases almost 25%. 展开更多
关键词 Ribbed microchannel Forced heat transfer Numerical study NANOFLUID Attack angle of rib
下载PDF
Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics
2
作者 Jalil Manafian Onur Alp Ilhan +1 位作者 as’ad alizadeh Sizar Abid Mohammed 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第7期8-20,共13页
The multiple lump solutions method is employed for the purpose of obtaining multiple soliton solutions for the generalized Bogoyavlensky-Konopelchenko(BK)equation.The solutions obtained contain first-order,second-orde... The multiple lump solutions method is employed for the purpose of obtaining multiple soliton solutions for the generalized Bogoyavlensky-Konopelchenko(BK)equation.The solutions obtained contain first-order,second-order,and third-order wave solutions.At the critical point,the second-order derivative and Hessian matrix for only one point is investigated,and the lump solution has one maximum value.He’s semi-inverse variational principle(SIVP)is also used for the generalized BK equation.Three major cases are studied,based on two different ansatzes using the SIVP.The physical phenomena of the multiple soliton solutions thus obtained are then analyzed and demonstrated in the figures below,using a selection of suitable parameter values.This method should prove extremely useful for further studies of attractive physical phenomena in the fields of heat transfer,fluid dynamics,etc. 展开更多
关键词 multiple rogue wave solutions multiple soliton solutions generalized Bogoyavlensky–Konopelchenko equation semi-inverse variational principle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部