Spent Coffee Ground (SCG) is characterized by high organic content, in the form of insoluble polysaccharides bound and phenol compounds. Phenol compounds are toxic to nature and <span style="font-family:Verdan...Spent Coffee Ground (SCG) is characterized by high organic content, in the form of insoluble polysaccharides bound and phenol compounds. Phenol compounds are toxic to nature and <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> a cause of environmental pollution. Composting method of this study is aerobic static batch composting with temperature control with adding activators of some fungi such as </span><i><span style="font-family:Verdana;">Aspergillus sp</span></i><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Penicillium sp. </span></i><span style="font-family:Verdana;">The purpose of the research is to fill the research gap from previous studies of spent coffee grounds compost, which requires a long time in composting, so that if it is used directly on the soil and plants, the positive effect also requires a long time. The result of composting for 28 days with this method is that mature compost has black crumb and normal pH, with characteristics of C/N ratio below 10: C1 (7.06), C2 (6.99). This value is far from the control with a C/N ratio of 8.33. Decompose rate of macromolecule are above 40% for lignin and 70% for cellulose. Implementation of compost in radish plants, resulting Germination Index above 80% which indicates that the compost is ripe: control (92.39%), C1 (183.88%), C2 (191.86%). The results of the analysis with FTIR also showed that the compost was mature and stable, and rich in minerals. So, it can be concluded </span><span style="font-family:Verdana;">that</span><span style="font-family:Verdana;"> this composting method can speed up composting time and optimize the results of compost produced.</span>展开更多
Livestock wastewater is mainly treated with activated sludge, but ions such as phosphorus, potassium, ammonium, nitrate and sulfate remain in the effluent. In this study, the effects of residual ions on phosphorus rec...Livestock wastewater is mainly treated with activated sludge, but ions such as phosphorus, potassium, ammonium, nitrate and sulfate remain in the effluent. In this study, the effects of residual ions on phosphorus recovery using the magnesium potassium phosphate crystallization method were investigated when magnesium was added to increase the pH. If co-existing ions affect the products, the phosphorus to potassium molar ratio (K/P ratio) of the precipitate will deviate from being equimolar. Artificial wastewater test solutions containing 5.6 - 20.3 mM ammonium, 25.6 mM potassium, 6.5 mM phosphorus, 0 - 7.35 mM nitrate, and 0 - 3.06 mM sulfate were used. First, the optimum operating pH and amount of magnesium added to give a high phosphorus removal rate and recovery rate were determined. The experimental setup was a 10 L aerated and stirred reactor, and a 5 L settling tank. The K/P ratio in precipitate was approximately 1 using the optimum conditions. Continuous 2 h treatment allowed a white precipitate containing about 30 g of needle-like crystals to be obtained. Next, the effects of varying the ammonium, nitrate, and sulfate ion concentrations in the artificial effluent were investigated. Ammonium and sulfate ion concentrations of 8 mM or more and 3 mM or more, respectively, caused the K/P ratio to decrease to about 0.7 and 0.5, respectively. Varying the nitrate concentration did not affect the K/P ratio, even at a nitrate concentration of 7.35 mM.展开更多
文摘Spent Coffee Ground (SCG) is characterized by high organic content, in the form of insoluble polysaccharides bound and phenol compounds. Phenol compounds are toxic to nature and <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> a cause of environmental pollution. Composting method of this study is aerobic static batch composting with temperature control with adding activators of some fungi such as </span><i><span style="font-family:Verdana;">Aspergillus sp</span></i><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Penicillium sp. </span></i><span style="font-family:Verdana;">The purpose of the research is to fill the research gap from previous studies of spent coffee grounds compost, which requires a long time in composting, so that if it is used directly on the soil and plants, the positive effect also requires a long time. The result of composting for 28 days with this method is that mature compost has black crumb and normal pH, with characteristics of C/N ratio below 10: C1 (7.06), C2 (6.99). This value is far from the control with a C/N ratio of 8.33. Decompose rate of macromolecule are above 40% for lignin and 70% for cellulose. Implementation of compost in radish plants, resulting Germination Index above 80% which indicates that the compost is ripe: control (92.39%), C1 (183.88%), C2 (191.86%). The results of the analysis with FTIR also showed that the compost was mature and stable, and rich in minerals. So, it can be concluded </span><span style="font-family:Verdana;">that</span><span style="font-family:Verdana;"> this composting method can speed up composting time and optimize the results of compost produced.</span>
文摘Livestock wastewater is mainly treated with activated sludge, but ions such as phosphorus, potassium, ammonium, nitrate and sulfate remain in the effluent. In this study, the effects of residual ions on phosphorus recovery using the magnesium potassium phosphate crystallization method were investigated when magnesium was added to increase the pH. If co-existing ions affect the products, the phosphorus to potassium molar ratio (K/P ratio) of the precipitate will deviate from being equimolar. Artificial wastewater test solutions containing 5.6 - 20.3 mM ammonium, 25.6 mM potassium, 6.5 mM phosphorus, 0 - 7.35 mM nitrate, and 0 - 3.06 mM sulfate were used. First, the optimum operating pH and amount of magnesium added to give a high phosphorus removal rate and recovery rate were determined. The experimental setup was a 10 L aerated and stirred reactor, and a 5 L settling tank. The K/P ratio in precipitate was approximately 1 using the optimum conditions. Continuous 2 h treatment allowed a white precipitate containing about 30 g of needle-like crystals to be obtained. Next, the effects of varying the ammonium, nitrate, and sulfate ion concentrations in the artificial effluent were investigated. Ammonium and sulfate ion concentrations of 8 mM or more and 3 mM or more, respectively, caused the K/P ratio to decrease to about 0.7 and 0.5, respectively. Varying the nitrate concentration did not affect the K/P ratio, even at a nitrate concentration of 7.35 mM.