期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of Aquifers in Crystalline and Crystallophyll Basement Zones Using the Electrical Resistivity Method (Trails and Electrical Soundings) in the Gagnoa Region, (Central-Western Côte d’Ivoire)
1
作者 Oscar Zahibo Onétié assoué kouakou sylvestre kouadio +1 位作者 Kotchi Rodrigue Orou Maxime Assa Abe 《International Journal of Geosciences》 CAS 2024年第6期511-523,共13页
Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambria... Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region. 展开更多
关键词 BASEMENT Electrical Profiles Sounding Curves Resistivities
下载PDF
Use of a Multiple Regression Model in the Estimation of Water Borehole Flows in the Middle of Cracked Basement in Côte d’Ivoire
2
作者 assoué kouakou sylvestre kouadio Ouedraogo Moussa +1 位作者 Ismaïla Ouattara Issiaka Savane 《Journal of Water Resource and Protection》 2020年第7期527-544,共18页
The objective of this study was to propose a mathematical regression model to estimate the exploitation flow rate of a water borehole from geophysical parameters in the midst of a fissured basement in the central-east... The objective of this study was to propose a mathematical regression model to estimate the exploitation flow rate of a water borehole from geophysical parameters in the midst of a fissured basement in the central-eastern part of C<span style="white-space:nowrap;">?</span>te d’Ivoire. The data of the study are both hydrogeological and geophysical parameters from one hundred and eleven (111) data sheets of (111) water and geophysical boreholes. Two methods were used. The Normal Principal Component Analysis (NPCA) method applied to the data made it possible to select the explanatory variables (geophysical parameters) for borehole productivity. The multiple linear regression method subsequently made it possible to propose a mathematical model capable of estimating the exploitation rate from the geophysical parameters. The results indicate a very strong correlation (0.87) between longitudinal conductivity and flow rate, with flow rate and apparent resistivity negatively correlated. The multiple linear regression method highlighted two relevant explanatory variables, longitudinal conductivity and apparent resistivity. These two geophysical parameters contributed to a mathematical model in the form <span style="white-space:nowrap;"><em>Q</em> = <em>C</em><sub>1</sub><em>X</em><sub>1</sub> + <em>C</em><sub>2</sub><em>X</em><sub>2</sub> + ... + <em>C</em><sub>n</sub><em>X</em><sub>n</sub> + <em>C</em><sub>0</sub></span>. the real model obtained in this work is <span style="white-space:nowrap;"><em>Q</em> = 0.82<em>Cl</em> - 0.12<em>Rho.app</em> + 2.5</span>. The resulting model is efficient with a correlation of 86% in calibration and 95% in validation. A bias of 0.37 in calibration and 0.82 in validation is observed. Finally, the square root mean square error (RMSE) is 3.10 to 3.38 respectively in calibration and validation. 展开更多
关键词 Productivity DRILLING Apparent Resistivity Longitudinal Conductivity Linear Regression Fissured Aquifers
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部