期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017:Analysis and simulation of GPS total electron content observations 被引量:3
1
作者 Yuichi Otsuka atsuki shinbori +3 位作者 Takuya Sori Takuya Tsugawa Michi Nishioka Joseph D.Huba 《Earth and Planetary Physics》 CSCD 2021年第5期427-434,共8页
This paper reports that plasma density depletions appearing at middle latitudes near sunrise survived until afternoon on 29 May 2017 during the recovery phase of a geomagnetic storm.By analyzing GPS data collected in ... This paper reports that plasma density depletions appearing at middle latitudes near sunrise survived until afternoon on 29 May 2017 during the recovery phase of a geomagnetic storm.By analyzing GPS data collected in Japan,we investigate temporal variations in the horizontal two-dimensional distribution of total electron content(TEC)during the geomagnetic storm.The SYM-H index reached-142 n T around 08 UT on 28 May 2017.TEC depletions extending up to approximately 38°N along the meridional direction appeared over Japan around 05 LT(LT=UT+9 hours)on 29 May 2017,when TEC rapidly increased at sunrise due to the solar extreme ultraviolet(EUV)radiation.The TEC depletions appeared sequentially over Japan for approximately 8 hours in sunlit conditions.At 06 LT on 29 May,when the plasma depletions first appeared over Japan,the background TEC was enhanced to approximately 17 TECU,and then decreased to approximately 80%of the TEC typical of magnetically quiet conditions.We conclude that this temporal variation of background plasma density in the ionosphere was responsible for the persistence of these plasma depletions for so long in daytime.By using the Naval Research Laboratory:Sami2 is Another Model of the Ionosphere(SAMI2),we have evaluated how plasma production and ambipolar diffusion along the magnetic field may affect the rate of plasma depletion disappearance.Simulation shows that the plasma density increases at the time of plasma depletion appearance;subsequent decreases in the plasma density appear to be responsible for the long-lasting persistence of plasma depletions during daytime.The plasma density depletion in the top side ionosphere is not filled by the plasma generated by the solar EUV productions because plasma production occurs mainly at the bottom side of the ionosphere. 展开更多
关键词 plasma bubble GPS IONOSPHERE ionospheric irregularity SAMI2
下载PDF
Analysis software for upper atmospheric data developed by the IUGONET project and its application to polar science 被引量:2
2
作者 Yoshimasa Tanaka atsuki shinbori +9 位作者 Tomoaki Hori Yukinobu Koyama Shuji Abe No-rio Umemura Yuka Sato Manabu Yagi Satoru UeNo Akiyo Yatagai Yasunobu Ogawa Yoshizumi Miyoshi 《Advances in Polar Science》 2013年第4期231-240,共10页
To comprehensively understand the Arctic and Antarctic upper atmosphere, it is often crucial to analyze various data that are obtained from many regions. Infrastructure that promotes such interdisciplinary studies on ... To comprehensively understand the Arctic and Antarctic upper atmosphere, it is often crucial to analyze various data that are obtained from many regions. Infrastructure that promotes such interdisciplinary studies on the upper atmosphere has been developed by a Japanese inter-university project called the Inter-university Upper atmosphere Global Observation Network (1UGONET). The objective of this paper is to describe the infrastructure and tools developed by IUGONET. We focus on the data analysis software. It is written in Interactive Data Language (IDL) and is a plug-in for the THEMIS Data Analysis Software suite (TDAS), which is a set of IDL libraries used to visualize and analyze satellite- and ground-based data. We present plots of upper atmospheric data provided by IUGONET as examples of applications, and verify the usefulness of the software in the study of polar science. We discuss IUGONET's new and unique developments, i.e., an executable file of TDAS that can run on the IDL Virtual Machine, IDL routines to retrieve metadata from the IUGONET database, and an archive of 3-D simulation data that uses the Common Data Format so that it can easily be used with TDAS. 展开更多
关键词 data analysis software metadata database upper atmosphere ground-based observation polar science interdisciplinary study IUGONET
下载PDF
Global distributions of storm-time ionospheric currents as seen in geomagnetic field variations
3
作者 atsuki shinbori Tomoaki Hori +3 位作者 Yoshimasa Tanaka Yukinobu Koyama Takashi Kiku-chi Tsutomu Nagatsuma 《Advances in Polar Science》 2013年第4期296-314,共19页
To investigate temporal and spatial evolution of global geomagnetic field variations from high-latitude to the equator during geomagnetic storms, we analyzed ground geomagnetic field disturbances from high latitudes t... To investigate temporal and spatial evolution of global geomagnetic field variations from high-latitude to the equator during geomagnetic storms, we analyzed ground geomagnetic field disturbances from high latitudes to the magnetic equator. The daytime ionospheric equivalent current during the storm main phase showed that twin-vortex ionospheric currents driven by the Region 1 field-aligned currents (R1 FACs) are intensified significantly and expand to the low-latitude region of-30~ magnetic latitude. Centers of the currents were located around 70~ and 65~ in the morning and afternoon, respectively. Corresponding to intensification of the R1 FACs, an enhancement of the eastward/westward equatorial electrojet occurred at the daytime/nighttime dip equator. This signature suggests that the enhanced convection electric field penetrates to both the daytime and nighttime equa- tor. During the recovery phase, the daytime equivalent current showed that two new pairs of twin vortices, which are different from two-cell ionospheric currents driven by the R1 FACs, appear in the polar cap and mid latitude. The former led to enhanced north- ward Bz (NBZ) FACs driven by lobe reconnection tailward of the cusps, owing to the northward interplanetary magnetic field (IMF). The latter was generated by enhanced Region 2 field-aligned currents (R2 FACs). Associated with these magnetic field variations in the mid-latitudes and polar cap, the equatorial magnetic field variation showed a strongly negative signature, produced by the westward equatorial electrojet current caused by the dusk-to-dawn electric field. 展开更多
关键词 solar wind interplanetary magnetic field geomagnetic storm convection electric field field-alignedcurrents equatorial electrojet NBZ FAC system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部