期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment 被引量:7
1
作者 Abidhan Bardhan Navid Kardani +3 位作者 Anasua GuhaRay avijit burman Pijush Samui Yanmei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1398-1412,共15页
This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project sche... This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project scheduling in tunnelling and underground projects in a rock environment.For this purpose,a sum of 185 datasets was collected from the literature and used to predict the ROP of TBM.Initially,the main dataset was utilised to construct and validate four conventional soft computing(CSC)models,i.e.minimax probability machine regression,relevance vector machine,extreme learning machine,and functional network.Consequently,the estimated outputs of CSC models were united and trained using an artificial neural network(ANN) to construct a hybrid ensemble model(HENSM).The outcomes of the proposed HENSM are superior to other CSC models employed in this study.Based on the experimental results(training RMSE=0.0283 and testing RMSE=0.0418),the newly proposed HENSM is potential to assist engineers in predicting ROP of TBM in the design phase of tunnelling and underground projects. 展开更多
关键词 Tunnel boring machine(TBM) Rate of penetration(ROP) Artificial intelligence Artificial neural network(ANN) Ensemble modelling
下载PDF
Reliability Analysis of Piled Raft Foundation Using a Novel Hybrid Approach of ANN and Equilibrium Optimizer 被引量:1
2
作者 Abidhan Bardhan Priyadip Manna +3 位作者 Vinay Kumar avijit burman Bojan Zlender Pijush Samui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1033-1067,共35页
In many civil engineering projects,Piled Raft Foundations(PRFs)are usually preferred where the incoming load fromthe superstructures is very high.In geotechnical engineering practice,the settlement of soil layers is a... In many civil engineering projects,Piled Raft Foundations(PRFs)are usually preferred where the incoming load fromthe superstructures is very high.In geotechnical engineering practice,the settlement of soil layers is a critical issue for the serviceability of the structures.Thus,assessment of risk associated with the structures corresponding to the maximum allowable settlement of soils needs to be carried out in the design phase.In this study,reliability analysis of PRF based on settlement criteria is performed using a high-performance hybrid soft computing model.The new approach is an integration of the artificial neural network(ANN)and a recently developed meta-heuristic algorithm called equilibrium optimizer(EO).The concept of reliability index was used to explore the feasibility of a newly constructed hybrid model of ANN and EO(i.e.,ANN-EO)against the conventional approach of calculating the probability of failure of PRF.Experimental results show that the proposed ANN-EO attained the most accurate prediction with R^(2)=0.9914 and RMSE=0.0518 in the testing phase,which are significantly better than those obtained from conventional ANN,multivariate adaptive regression splines,and genetic programming,including the ANNoptimized with particle swarmoptimization developed in this study.Based on the experimental results of different settlement values,the newly constructedANN-EOis very potential to analyze the risk associatedwith civil engineering structures.Also,the present study would significantly contribute to the knowledge pool of reliability studies related to piled raft systems because the works of literature on reliability analysis of piled raft systems are relatively scarce. 展开更多
关键词 Risk analysis soil meta-heuristic optimization particle swarm optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部