期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Impact of Different Rooftop Coverings on Photovoltaic Panel Temperature
1
作者 aws al-akam Ahmed A.Abduljabbar Ali Jaber Abdulhamed 《Energy Engineering》 EI 2024年第12期3761-3777,共17页
Photovoltaic(PV)panels are essential to the global transition towards sustainable energy,offering a clean,renewable source that reduces reliance on fossil fuels and mitigates climate change.High temperatures can signi... Photovoltaic(PV)panels are essential to the global transition towards sustainable energy,offering a clean,renewable source that reduces reliance on fossil fuels and mitigates climate change.High temperatures can significantly affect the performance of photovoltaic(PV)panels by reducing their efficiency and power output.This paper explores the consequential effect of various rooftop coverings on the thermal performance of photovoltaic(PV)panels.It investigates the relationship between the type of rooftop covering materials and the efficiency of PV panels,considering the thermal performance and its implications for enhancing their overall performance and sustainability.The study compares four rooftop covering materials:wooden flakes packs(both dry and wet),polystyrene,and woolen insulation.The measurements were implemented under Iraqi weather conditions.The comparison was based on the PV panels’thermal behavior and its impact on conversion efficiency.The results revealed that covering the roof beneath the installed PV panels reduces their temperature and increases efficiency.The best performance was observedwhen placingwetwooden flakes beneath the panels,with an efficiency increase of 5%.Moreover,thewoolen insulation offered an efficiency rise of 12%near sunset.Themain outcome of thiswork is that the wet–wooden–flakes showed the best performance improvement of the PV panels. 展开更多
关键词 Solar energy PV panels thermal performance rooftop covering
下载PDF
Tubular Heat Enhancement Using Twisted Tape Inserts with Large Holes
2
作者 Ali Jaber Abdulhamed aws al-akam +1 位作者 Wisam J.Khudhayer Ali Sabri Allw 《Energy Engineering》 EI 2024年第2期273-290,共18页
Heat augmentation techniques play a vital role in the heating and cooling processes in industries,including solar collectors and many applications that utilize heat exchangers.Several studies are based on inserting fi... Heat augmentation techniques play a vital role in the heating and cooling processes in industries,including solar collectors and many applications that utilize heat exchangers.Several studies are based on inserting fillers inside the tubes to enhance heat transfer.This investigation considered the effects of twisted tapes with large holes on a tubular heat exchanger’s(HX)heat transmission,pressure drop,and thermal boosting factor.In the experimental section,counter-swirl flow generators used twisted tapes with pairs of 1.0 cm-diameter holes and changes in porosity(Rp)at 1.30%and 2.70%.In the experiments,air was utilized as a working fluid in a tube with a circular cross-section.The turbulent flow was considered,with Reynolds numbers(Re)domain from 4800 to 9500,and a boundary condition with a uniform wall heat flux was constructed.The findings expound that when the number of holes rose,the Nusselt number(Nu),the factor of friction(f),and the thermal enhancement factor(η)all increased as well.Additionally,as the friction factor increased,the Nusselt number of the tape-equipped tube was noticeably higher.Additionally,it was discovered that the friction factor was between 70%and 94%lower than the values of the tube without tape,while the(Nu)was between 87%and 97%higher than the conventional tube values.The maximum value ofηis 89%.According to the experimental results,empirical correlations for Nu,f,andηwere also generated. 展开更多
关键词 TUBULAR heat exchanger tape inserts twisted tape
下载PDF
Waste Heat Recovery from a Drier Receiver of an A/C Unit Using Thermoelectric Generators 被引量:1
3
作者 Ali Jaber Abdulhamed aws al-akam +1 位作者 Ahmed A.Abduljabbar Mohammed H.Alkhafaji 《Energy Engineering》 EI 2023年第8期1729-1746,共18页
Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer rec... Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver(FDR)of an air conditioning(A/C)system,which would otherwise go to waste.The study aims to build a set of thermoelectric generators(TEG)to collect the waste heat of the FDR and generate low-power electricity.A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging.The thermoelectric generator(TEGs)was installed on the FDR of the A/C unit.The test showed that climate conditions have a significant impact on the output power generated from the system.The results showed that the peak voltage recorded in the current study is 5.2 V per day(wet,cold,and wind weather)with an output power of 0.2 W.These values are acceptable for powering the load and charging a single battery with 3.5 V as the voltage increases battery 0.1 V/20 min charge.A case study of operating the emergency signs in a building was considered.The current heat recovery system is deemed to be easily installed and can be connected to a network of TEGs to produce more power. 展开更多
关键词 Thermoelectric generator waste heat filter dryer receiver air conditioning heat recovery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部