Assam of the northeastern region of India is unique in terms of its rich biodiversity and multiple ethnicity of its people. The impact of the resultant socio-religio-cultural diversity is also reflected in the diverse...Assam of the northeastern region of India is unique in terms of its rich biodiversity and multiple ethnicity of its people. The impact of the resultant socio-religio-cultural diversity is also reflected in the diverse traditional ways of silkworm farming. We report the genetic diversity of Persea bombycina “Som” from different locations of Goalpara district of Assam, India, where random amplified polymorphic DNA (RAPD) marker was used in this study. RAPD analyses of ten genotypes of “Som” from Goalpara district of Assam, India with B19 RAPD primer generated 86 bands, showing an average of 8.6 bands per sample and 30.2% (26 bands) of these were polymorphic. The number of bands per accession ranged from 5 to 10 with a mean of 8.6 and the size range of the amplified bands was 250 - 6000 bp. In a UPGMA phenetic dendrogram based on Jaccard’s coefficient, the P. bombycina accessions showed a high level of genetic variation, as indicated by genetic similarity and revealed 10 “Som” genotypes in to three major clusters. This study may be useful in identifying diverse genetic stocks of P. bombycina, which may then be conserved on a priority basis. The RAPD primer used in this study was able to distinguish all the 10 genotypes of “Som” plants, which can be used to assess genetic diversity.展开更多
This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this con...This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this converter a front-end power factor corrected boost stage integrates with a cascaded dc-to-dc bridge HF converter. The front-end boost converter operates in discontinuous current mode and ensures natural power factor correction with very simple control. The auxiliary circuit of this topology deals with very small power and is placed out of the main power path. As a result, the auxiliary circuit components have smaller power rating as opposed to main converter components. Also, output rectifier voltage is clamped to output voltage due to capacitive output filter. Identification and analyses of different operating modes of this converter are presented. Based on these analyses design example of a 50 kHz, 48 V, 1 kW ac-to-dc converter is presented. PSPICE simulation results of the designed converter are presented and explained to verify the performance of this converter.展开更多
The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composi...The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composite films with different graphene contents were fabricated by high-energy ball milling,cold isostatic pressing,scraping and coating,successively.High-energy ball milling is beneficial to the dispersion of graphene powder,while cold isostatic pressing can greatly enhance thermal conductivity and mechanical strength by reducing the voids in the film and increasing the contact area of graphene sheets.The thermal conductivity,tensile strength and electromagnetic shielding properties of the films were carefully investigated and compared.It was demonstrated that the thermal conductivity increased from 0.19 Wm-1.K-1 for pure PVDF to 103.9 W-m-1.K-1 for the composite film with PVDF:graphene=1:3.Meanwhile the electromagnetic shielding efficiency can reach 36.55 dB.The prepared PVDF/graphene composite films exhibit outstanding overall performance and have the potential for practical applications.展开更多
The interaction between complex magnetic structures and non-trivial band structures in ternary rare-earth GdCr_(6)Ge_(6) induces exotic and abundant electro-magnetic phenomena.In this work,we perform a systematical in...The interaction between complex magnetic structures and non-trivial band structures in ternary rare-earth GdCr_(6)Ge_(6) induces exotic and abundant electro-magnetic phenomena.In this work,we perform a systematical investigation on critical behaviors and magnetic properties of the single-crystal GdCr_(6)Ge_(6).The temperature,field,and angle dependence of magnetization unveils strong magnetic anisotropy along the c-axis and isotropic characteristic in the ab-plane.Critical exponentsβ=0.252(1),γ=0.905(9),δ=4.606(3)for H//ab,andβ=0.281(3),γ=0.991(8),δ=4.541(5)for H//c are obtained by the modified Arrott plot method(MAP)and critical isotherm(CI)analysis.The determined exponents for both directions are consistent with the theoretical prediction of a tricritical mean-field model.Based on detailed magnetization measurements and universality scaling,comprehensive magnetic phase diagrams of GdCr6Ge6for H//ab and H//c are constructed,which reveal that the external field induces a ferromagnetic(FM)transition for H//ab while a ferrimagnetic(FIM)one for H//c.Two tricritical points are determined for H//ab(11.2 K,266.3 Oe)and H//c(11.3 K,3.3 kOe)on the phase diagrams,respectively.The field-induced anisotropic magnetic configurations and multiple phases are clarified,where the moments of Gd and Cr form FM coupling for H//ab while FIM one for H//c via the interaction between Gd and Cr sublattices.展开更多
Background:The accurate estimation of temporal patterns of influenza may help in utilizing hospital resources and guiding influenza surveillance.This paper proposes functional data analysis(FDA)to improve the predicti...Background:The accurate estimation of temporal patterns of influenza may help in utilizing hospital resources and guiding influenza surveillance.This paper proposes functional data analysis(FDA)to improve the prediction of temporal patterns of influenza.Methods:We illustrate FDA methods using the weekly Influenza-like Illness(ILI)activity level data from the U.S.We propose to use the Fourier basis function for transforming discrete weekly data to the smoothed functional ILI activities.Functional analysis of variance(FANOVA)is used to examine the regional differences in temporal patterns and the impact of state's political orientation.Results:The ILI activity has a very distinct peak at the beginning and end of the year.There are significant differences in average level of ILI activities among geographic regions.However,the temporal patterns in terms of the peak and flat time are quite consistent across regions.The geographic and temporal patterns of ILI activities also depend on the political make-up of states.The states affiliated with Republicans had higher ILI activities than those affiliated with Democrats across the whole year.The influence of political party affiliation on temporal pattern is quite different among geographic regions.Conclusions:Functional data analysis can help us to reveal the temporal variability in average ILI levels,rate of change in ILI levels,and the effect of geographical regions.Consideration should be given to wider application of FDA to generate more accurate estimates in public health and biomedical research.展开更多
文摘Assam of the northeastern region of India is unique in terms of its rich biodiversity and multiple ethnicity of its people. The impact of the resultant socio-religio-cultural diversity is also reflected in the diverse traditional ways of silkworm farming. We report the genetic diversity of Persea bombycina “Som” from different locations of Goalpara district of Assam, India, where random amplified polymorphic DNA (RAPD) marker was used in this study. RAPD analyses of ten genotypes of “Som” from Goalpara district of Assam, India with B19 RAPD primer generated 86 bands, showing an average of 8.6 bands per sample and 30.2% (26 bands) of these were polymorphic. The number of bands per accession ranged from 5 to 10 with a mean of 8.6 and the size range of the amplified bands was 250 - 6000 bp. In a UPGMA phenetic dendrogram based on Jaccard’s coefficient, the P. bombycina accessions showed a high level of genetic variation, as indicated by genetic similarity and revealed 10 “Som” genotypes in to three major clusters. This study may be useful in identifying diverse genetic stocks of P. bombycina, which may then be conserved on a priority basis. The RAPD primer used in this study was able to distinguish all the 10 genotypes of “Som” plants, which can be used to assess genetic diversity.
文摘This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this converter a front-end power factor corrected boost stage integrates with a cascaded dc-to-dc bridge HF converter. The front-end boost converter operates in discontinuous current mode and ensures natural power factor correction with very simple control. The auxiliary circuit of this topology deals with very small power and is placed out of the main power path. As a result, the auxiliary circuit components have smaller power rating as opposed to main converter components. Also, output rectifier voltage is clamped to output voltage due to capacitive output filter. Identification and analyses of different operating modes of this converter are presented. Based on these analyses design example of a 50 kHz, 48 V, 1 kW ac-to-dc converter is presented. PSPICE simulation results of the designed converter are presented and explained to verify the performance of this converter.
基金This work was supported by the National Natural ScienceFoundationofChina(No.U22B2066,No.12064044)the Major Science and Technology Projects of Anhui Province(No.202103a05020016)+1 种基金the open competition project to select the best candidates to undertake major science and key research projectsofTonglingcity,AnhuiProvince(No.202101JB002)A proportion of this work was supported by the High Magnetic Field Laboratory of Anhui Province and Academician workstation of Hangzhou Xingyu Carbon Environmental Tech Co.,Ltd.,and the Hefei Institutes of Physical Science Director's Fund(No.YZJJ-GGZX-2022-01).
文摘The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composite films with different graphene contents were fabricated by high-energy ball milling,cold isostatic pressing,scraping and coating,successively.High-energy ball milling is beneficial to the dispersion of graphene powder,while cold isostatic pressing can greatly enhance thermal conductivity and mechanical strength by reducing the voids in the film and increasing the contact area of graphene sheets.The thermal conductivity,tensile strength and electromagnetic shielding properties of the films were carefully investigated and compared.It was demonstrated that the thermal conductivity increased from 0.19 Wm-1.K-1 for pure PVDF to 103.9 W-m-1.K-1 for the composite film with PVDF:graphene=1:3.Meanwhile the electromagnetic shielding efficiency can reach 36.55 dB.The prepared PVDF/graphene composite films exhibit outstanding overall performance and have the potential for practical applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074386,11874358,U1432138,11974181,12204006,and 12250410238)the Collaborative Innovation Program of Hefei Science Center,CAS(Grant No.2021HSC-CIP006)+3 种基金the Alliance of International Science Organizations(Grant No.ANSO-VF-2022-03)the Key Project of Natural Scientific Research of Universities in Anhui Province(Grant No.K120462009)the Anhui Provincial Natural Science Foundation(Grant No.2108085QA21)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘The interaction between complex magnetic structures and non-trivial band structures in ternary rare-earth GdCr_(6)Ge_(6) induces exotic and abundant electro-magnetic phenomena.In this work,we perform a systematical investigation on critical behaviors and magnetic properties of the single-crystal GdCr_(6)Ge_(6).The temperature,field,and angle dependence of magnetization unveils strong magnetic anisotropy along the c-axis and isotropic characteristic in the ab-plane.Critical exponentsβ=0.252(1),γ=0.905(9),δ=4.606(3)for H//ab,andβ=0.281(3),γ=0.991(8),δ=4.541(5)for H//c are obtained by the modified Arrott plot method(MAP)and critical isotherm(CI)analysis.The determined exponents for both directions are consistent with the theoretical prediction of a tricritical mean-field model.Based on detailed magnetization measurements and universality scaling,comprehensive magnetic phase diagrams of GdCr6Ge6for H//ab and H//c are constructed,which reveal that the external field induces a ferromagnetic(FM)transition for H//ab while a ferrimagnetic(FIM)one for H//c.Two tricritical points are determined for H//ab(11.2 K,266.3 Oe)and H//c(11.3 K,3.3 kOe)on the phase diagrams,respectively.The field-induced anisotropic magnetic configurations and multiple phases are clarified,where the moments of Gd and Cr form FM coupling for H//ab while FIM one for H//c via the interaction between Gd and Cr sublattices.
基金Authors acknowledged the Canadian Institute for Health Research(CIHR)Children's Hospital Research Institute of Manitoba(CHRIM)Foundation+1 种基金Visual and Automated Disease Analytics(VADA)graduate training program of Natural Sciences and Engineering Research Council of Canada(NSERC)for providing the funding opportunities to conduct this research.
文摘Background:The accurate estimation of temporal patterns of influenza may help in utilizing hospital resources and guiding influenza surveillance.This paper proposes functional data analysis(FDA)to improve the prediction of temporal patterns of influenza.Methods:We illustrate FDA methods using the weekly Influenza-like Illness(ILI)activity level data from the U.S.We propose to use the Fourier basis function for transforming discrete weekly data to the smoothed functional ILI activities.Functional analysis of variance(FANOVA)is used to examine the regional differences in temporal patterns and the impact of state's political orientation.Results:The ILI activity has a very distinct peak at the beginning and end of the year.There are significant differences in average level of ILI activities among geographic regions.However,the temporal patterns in terms of the peak and flat time are quite consistent across regions.The geographic and temporal patterns of ILI activities also depend on the political make-up of states.The states affiliated with Republicans had higher ILI activities than those affiliated with Democrats across the whole year.The influence of political party affiliation on temporal pattern is quite different among geographic regions.Conclusions:Functional data analysis can help us to reveal the temporal variability in average ILI levels,rate of change in ILI levels,and the effect of geographical regions.Consideration should be given to wider application of FDA to generate more accurate estimates in public health and biomedical research.