This paper describes the application of principal component analysis (PCA) and artificial neural network (ANN) to predict the air pollutant index (API) within the seven selected Malaysian air monitoring stations in th...This paper describes the application of principal component analysis (PCA) and artificial neural network (ANN) to predict the air pollutant index (API) within the seven selected Malaysian air monitoring stations in the southern region of Peninsular Malaysia based on seven years database (2005-2011). Feed-forward ANN was used as a prediction method. The feed-forward ANN analysis demonstrated that the rotated principal component scores (RPCs) were the best input parameters to predict API. From the 4 RPCs, only 10 (CO, O3, PM10, NO2, CH4, NmHC, THC, wind direction, humidity and ambient temp) out of 12 prediction variables were the most significant parameters to predict API. The results proved that the ANN method can be applied successfully as tools for decision making and problem solving for better atmospheric management.展开更多
This study constructs downscaling statistical model in analyzing the hydrological modeling in the study area which faces the risk of flood occurrence as the impact of climate change. The combination of chemometric met...This study constructs downscaling statistical model in analyzing the hydrological modeling in the study area which faces the risk of flood occurrence as the impact of climate change. The combination of chemometric method and time series analysis in this study show that even during the monsoon season, rainfall and stream flow are not the major contribution towards the changing of water level in the study area. Based on Correlation Test, it shows that suspended solid and water level show high correlation with p-value < 0.05. Factor Analysis being carried out to determine the major contribution to the changes of Water Level and the result show that Suspended Solid shows a strong factor pattern with value 0.829. Based on Control Chat Builder for time series analysis, the Upper Control Limit for water level and suspended solid are 7.529 m and 1947.049 tons/day and the Lower Control Limit are 6.678 m and 178.135 tons/day. This shows that human development in the area gives high impact towards climate change and risk of flood in the study area which commonly faces flood during monsoon season.展开更多
文摘This paper describes the application of principal component analysis (PCA) and artificial neural network (ANN) to predict the air pollutant index (API) within the seven selected Malaysian air monitoring stations in the southern region of Peninsular Malaysia based on seven years database (2005-2011). Feed-forward ANN was used as a prediction method. The feed-forward ANN analysis demonstrated that the rotated principal component scores (RPCs) were the best input parameters to predict API. From the 4 RPCs, only 10 (CO, O3, PM10, NO2, CH4, NmHC, THC, wind direction, humidity and ambient temp) out of 12 prediction variables were the most significant parameters to predict API. The results proved that the ANN method can be applied successfully as tools for decision making and problem solving for better atmospheric management.
文摘This study constructs downscaling statistical model in analyzing the hydrological modeling in the study area which faces the risk of flood occurrence as the impact of climate change. The combination of chemometric method and time series analysis in this study show that even during the monsoon season, rainfall and stream flow are not the major contribution towards the changing of water level in the study area. Based on Correlation Test, it shows that suspended solid and water level show high correlation with p-value < 0.05. Factor Analysis being carried out to determine the major contribution to the changes of Water Level and the result show that Suspended Solid shows a strong factor pattern with value 0.829. Based on Control Chat Builder for time series analysis, the Upper Control Limit for water level and suspended solid are 7.529 m and 1947.049 tons/day and the Lower Control Limit are 6.678 m and 178.135 tons/day. This shows that human development in the area gives high impact towards climate change and risk of flood in the study area which commonly faces flood during monsoon season.