Using sunlight to drive chemical reactions via photocatalysis is paramount for a sustainable future.Among several photocatalysts,employing layered double hydrides(LDH) for photocatalytic application is most straightfo...Using sunlight to drive chemical reactions via photocatalysis is paramount for a sustainable future.Among several photocatalysts,employing layered double hydrides(LDH) for photocatalytic application is most straightforward and desirable owing to their distinctive two-dimensional(2D) lamellar structure and optical attributes.This article reviews the advancements in bimetallic/trimetallic LDHs and various strategies to achieve high efficiency toward an outstanding performing photocatalyst.Firstly,the tuning of LDH components that control the electro nic and structural properties is explained.The tu ning obtained through the adoption,combination,and incorporation of different cations and anions is also explained.The progress of modification methods,such as the adoption of different morphologies,delamination,and defect engineering towards enhanced photocatalytic activities,is discussed in the mainstream.The band engineering,structural characteristics,and redox tuning are further deliberated to maximize solar energy harvesting for different photocatalytic applications.Finally,the progress obtained in forming hierarchical heterostructures through hybridization with other semiconductors or conducting materials is systematically disclosed to get maximum photocatalytic performance.Moreover,the structural changes during the in-situ synthesis of LDH and the stability of LDH-based photocatalysts are deliberated.The review also summarizes the improvements in LDH properties obtained through modification tactics and discusses the prospects for future energy and environmental applications.展开更多
In this research,green synthesized magnesium oxide nanoparticles(MgO NPs)from lemon fruit extracts and their fungicidal potential was evaluated against Alternaria dauci infection on carrot(Daucus carota L.)under green...In this research,green synthesized magnesium oxide nanoparticles(MgO NPs)from lemon fruit extracts and their fungicidal potential was evaluated against Alternaria dauci infection on carrot(Daucus carota L.)under greenhouse conditions.The scanning and transmission electron microscopy(SEM and TEM)and ultra-violet(UV)visible spectroscopy were used to validate and characterize MgO NPs.The crystalline nature of MgONPs was determined using selected area electron diffraction(SAED).MgO NPs triggered substantial antifungal activity against A.dauci when exposed to 50 and 100 mg L^(–1)concentrations but the higher antifungal potential was noticed in 100 mg L^(–1)under invitro conditions.In fungal inoculated plants,a marked decrease in growth,photosynthetic pigments,and an increase in phenol,proline contents,and defense-related enzymes of carrot were seen over control(distilled water).However,foliar application of MgO NPs at 50 and 100 mg L^(–1)resulted in significant improvement of plant growth,photosynthetic pigments,phenol and proline contents,and defense enzymes activity of carrots with and without A.dauci infection.Spraying of MgO NPs at 100 mg L^(–1)had more plant length(17.11%),shoot dry weight(34.38%),plant fresh weight(20.46%),and root dry weight(49.09%)in carrots when challenged with A.dauci over inoculated control.The leaf blight indices and percent disease severity were also reduced in A.dauci inoculated plants when sprayed with MgO NPs.The non-bonding interactions of Alternaria genus protein with nanoparticles were studied using molecular docking.展开更多
Photocatalytic solar to energy conversion is considered an attractive approach for overcoming energy crises and environmental concerns.Recently,titanium carbide(Ti_(3)C_(2))MXenes have been recognized as promising coc...Photocatalytic solar to energy conversion is considered an attractive approach for overcoming energy crises and environmental concerns.Recently,titanium carbide(Ti_(3)C_(2))MXenes have been recognized as promising cocatalysts based on their metallic conductivity,excessive active reaction sites,and enlarged surface area.The current review focuses on the properties and applications of Ti_(3)C_(2)MXenes useful in the field of photocatalysis.More specifically,surface modification of Ti_(3)C_(2)MXenes by varying synthesis parameters to get pure materials and also composites with the role of functional groups towards solar energy conversion applications is highlighted in this review.The effect of etching and oxidizing pathways to get an efficient cocatalyst has been discussed in detail.Considering the significant effect of parameters,optimum synthesis conditions such as etchant type,concentration,time and type of intercalant in both the Ti_(3)C_(2)synthesis approaches for improved photoactivity are discussed.Additionally,the surface modification of Ti_(3)C_(2)through oxidation for TiO2growth on its surface is deliberated with a detailed discussion on etchant type,concentration,etching time,and environmental factors.The optimum oxidation condition,including temperature,time,and environment for thermal treatment of Ti_(3)C_(2),were also included.Lastly,the review summarizes the conclusion and future perspectives for solar energy conversion applications.展开更多
基金United Arab Emirates University (UAE) for providing funding of this research undergrant # 12N097。
文摘Using sunlight to drive chemical reactions via photocatalysis is paramount for a sustainable future.Among several photocatalysts,employing layered double hydrides(LDH) for photocatalytic application is most straightforward and desirable owing to their distinctive two-dimensional(2D) lamellar structure and optical attributes.This article reviews the advancements in bimetallic/trimetallic LDHs and various strategies to achieve high efficiency toward an outstanding performing photocatalyst.Firstly,the tuning of LDH components that control the electro nic and structural properties is explained.The tu ning obtained through the adoption,combination,and incorporation of different cations and anions is also explained.The progress of modification methods,such as the adoption of different morphologies,delamination,and defect engineering towards enhanced photocatalytic activities,is discussed in the mainstream.The band engineering,structural characteristics,and redox tuning are further deliberated to maximize solar energy harvesting for different photocatalytic applications.Finally,the progress obtained in forming hierarchical heterostructures through hybridization with other semiconductors or conducting materials is systematically disclosed to get maximum photocatalytic performance.Moreover,the structural changes during the in-situ synthesis of LDH and the stability of LDH-based photocatalysts are deliberated.The review also summarizes the improvements in LDH properties obtained through modification tactics and discusses the prospects for future energy and environmental applications.
基金the Researchers Supporting Project Number(RSP2023R339)at King Saud University,Riyadh,Saudi Arabia。
文摘In this research,green synthesized magnesium oxide nanoparticles(MgO NPs)from lemon fruit extracts and their fungicidal potential was evaluated against Alternaria dauci infection on carrot(Daucus carota L.)under greenhouse conditions.The scanning and transmission electron microscopy(SEM and TEM)and ultra-violet(UV)visible spectroscopy were used to validate and characterize MgO NPs.The crystalline nature of MgONPs was determined using selected area electron diffraction(SAED).MgO NPs triggered substantial antifungal activity against A.dauci when exposed to 50 and 100 mg L^(–1)concentrations but the higher antifungal potential was noticed in 100 mg L^(–1)under invitro conditions.In fungal inoculated plants,a marked decrease in growth,photosynthetic pigments,and an increase in phenol,proline contents,and defense-related enzymes of carrot were seen over control(distilled water).However,foliar application of MgO NPs at 50 and 100 mg L^(–1)resulted in significant improvement of plant growth,photosynthetic pigments,phenol and proline contents,and defense enzymes activity of carrots with and without A.dauci infection.Spraying of MgO NPs at 100 mg L^(–1)had more plant length(17.11%),shoot dry weight(34.38%),plant fresh weight(20.46%),and root dry weight(49.09%)in carrots when challenged with A.dauci over inoculated control.The leaf blight indices and percent disease severity were also reduced in A.dauci inoculated plants when sprayed with MgO NPs.The non-bonding interactions of Alternaria genus protein with nanoparticles were studied using molecular docking.
基金supported by United Arab Emirates University(UAEU),United Arab Emirates under research fund no 12N097。
文摘Photocatalytic solar to energy conversion is considered an attractive approach for overcoming energy crises and environmental concerns.Recently,titanium carbide(Ti_(3)C_(2))MXenes have been recognized as promising cocatalysts based on their metallic conductivity,excessive active reaction sites,and enlarged surface area.The current review focuses on the properties and applications of Ti_(3)C_(2)MXenes useful in the field of photocatalysis.More specifically,surface modification of Ti_(3)C_(2)MXenes by varying synthesis parameters to get pure materials and also composites with the role of functional groups towards solar energy conversion applications is highlighted in this review.The effect of etching and oxidizing pathways to get an efficient cocatalyst has been discussed in detail.Considering the significant effect of parameters,optimum synthesis conditions such as etchant type,concentration,time and type of intercalant in both the Ti_(3)C_(2)synthesis approaches for improved photoactivity are discussed.Additionally,the surface modification of Ti_(3)C_(2)through oxidation for TiO2growth on its surface is deliberated with a detailed discussion on etchant type,concentration,etching time,and environmental factors.The optimum oxidation condition,including temperature,time,and environment for thermal treatment of Ti_(3)C_(2),were also included.Lastly,the review summarizes the conclusion and future perspectives for solar energy conversion applications.