Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We develope...Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods.展开更多
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th...Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.展开更多
In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-ti...In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-tion for Cluster Head and Gateway Selection(NQCAFFFOCHGS)has the best network performance because it uses the Improved Weighted Clustering Algo-rithm(IWCA)to cluster the network and the FFO algorithm,which uses fuzzy-based network metrics to select the best CH and entryway.However,the major drawback of the fuzzy system was to appropriately select the membership func-tions.Also,the network metrics related to the path or link connectivity were not considered to effectively choose the CH and gateway.When learning fuzzy sets,this algorithm employs a new Continuous Action-set Learning Automata(CALA)approach that correctly modifies and chooses the fuzzy membership functions.Despite the fact that it extends the network’s lifespan,it does not assist in the detection of defective nodes in the routing route.Because of this,a new Fault Tolerance(NQCAEFFFOCHGS-FT)mechanism based on the Distributed Connectivity Restoration(DCR)mechanism is proposed,which allows the net-work to self-heal as a consequence of the algorithm’s self-healing capacity.Because of the way this method is designed,node failures may be utilised to rebuild the network topology via the use of cascaded node moves.Founded on the fractional network information and topologic overhead related with each node,the DCR is suggested as an alternative to the DCR.When compared to the NQCAFFFOCHGS algorithm,the recreation results display that the proposed NQCAEFFFOCHGS-FT algorithm improves network performance in terms of end-to-end delay,energy consumption,Packet Loss Ratio(PLR),Normalized Routing Overhead(NRO),and Balanced Load Index(BLI).展开更多
文摘Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods.
文摘Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.
文摘In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-tion for Cluster Head and Gateway Selection(NQCAFFFOCHGS)has the best network performance because it uses the Improved Weighted Clustering Algo-rithm(IWCA)to cluster the network and the FFO algorithm,which uses fuzzy-based network metrics to select the best CH and entryway.However,the major drawback of the fuzzy system was to appropriately select the membership func-tions.Also,the network metrics related to the path or link connectivity were not considered to effectively choose the CH and gateway.When learning fuzzy sets,this algorithm employs a new Continuous Action-set Learning Automata(CALA)approach that correctly modifies and chooses the fuzzy membership functions.Despite the fact that it extends the network’s lifespan,it does not assist in the detection of defective nodes in the routing route.Because of this,a new Fault Tolerance(NQCAEFFFOCHGS-FT)mechanism based on the Distributed Connectivity Restoration(DCR)mechanism is proposed,which allows the net-work to self-heal as a consequence of the algorithm’s self-healing capacity.Because of the way this method is designed,node failures may be utilised to rebuild the network topology via the use of cascaded node moves.Founded on the fractional network information and topologic overhead related with each node,the DCR is suggested as an alternative to the DCR.When compared to the NQCAFFFOCHGS algorithm,the recreation results display that the proposed NQCAEFFFOCHGS-FT algorithm improves network performance in terms of end-to-end delay,energy consumption,Packet Loss Ratio(PLR),Normalized Routing Overhead(NRO),and Balanced Load Index(BLI).