It is well known that precipitation hardening in magnesium(Mg)alloys is far less effective than in aluminum alloys.Thus,it is important to understand the surface and interfacial structure and energetics between precip...It is well known that precipitation hardening in magnesium(Mg)alloys is far less effective than in aluminum alloys.Thus,it is important to understand the surface and interfacial structure and energetics between precipitates and matrix.In upscale modeling of magnesium alloys,these energy data are of great significance.In this work,we calculated the surface and interfacial energies of Mg_(17)Al_(12)-Mg system by carefully selecting the surface or interface termination,using atomistic simulations.The results show that,the higher fraction of Mg atoms on the surface,the lower the surface energy of Mg_(17)Al_(12).The interfacial energy of Mg/Mg_(17)Al_(12)was calculated in which the Burgers orientation relationship(OR)was satisfied.It was found that the(011)P|(0002)Mg interface has the lowest interfacial energy(248 mJ/m 2).Because the Burgers OR breaks when{10¯12}twin occurs,which reorients the matrix,the interfacial energy for Mg_(17)Al_(12)and a{10¯12}twin was also calculated.The results show that after twinning,the lowest interfacial energy increases by 244 mJ/m^(2),and the interface becomes highly incoherent due to the change in orientation relationship between Mg_(17)Al_(12)and the matrix.展开更多
The aim of this study is to detect whether the quantitative textural features of optical coherencetomography angiography (OCTA) images can be used to detect the eyes in the early stage ofdiabetic retinopathy (DR) from...The aim of this study is to detect whether the quantitative textural features of optical coherencetomography angiography (OCTA) images can be used to detect the eyes in the early stage ofdiabetic retinopathy (DR) from eyes with diabetes and no DR (NDR). Textural features includingfractal dimension, contrast, correlation, entropy, energy, and homogeneity were calculatedfrom the OCTA images. The Student's t-test was performed to identify the textural featuresthat can be able to detect DR in the early stage. The area under the receiver operating characteristic(AUROC) curves, sensitivity, and specicity were calculated between the study groups.Our results indicated that the fractal dimension in ICP and SVP and the correlation in SVCshowed the statistical signicance between mild NPDR patients and NDR patients. The ROCanalysis results showed that the AUROC of the fractal dimension in ICP was 0.736 with 0.773sensitivity and 0.700 specicity. The cuto® point in ICP was 2.616. The OCTA-based fractaldimension was able to discriminate diabetic eyes with early retinopathy from healthy and NDRwith higher sensitivity and specicity. The OCTA-based correlation showed the power to differentiatethe mild NPDR eyes from the normal healthy and diabetic eyes. These results suggestthat texture-based features of OCTA have the potential to assist in the assessment of therapeuticinterventions to prevent early DR in diabetic subjects.展开更多
The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the l...The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the lack of engineering experience on the drivability of large-diameter cylinders under multiple vibratory hammers,predicting the penetration rate and time of steel cylinders is an open challenge that has a considerable impact on the construction control of the HZMB.In this study,the vibratory penetration of large-diameter steel cylinders in the HZMB is investigated based on geological surveys,field monitoring,and drivability analysis.The vibratory penetration rate,installation accuracy,and dynamic responses of the steel cylinders at both the eastern and western artificial islands are analyzed.The dynamic soil resistance has a great influence on the cylinder drivability.However,the current design methods for estimating the vibratory driving soil resistance are proven inaccurate without considering the scale effects.Therefore,a modified method with a normalized effective area ratio A_(r,eff)is proposed in this study to calculate the vibratory soil resistance for open-ended thin-wall cylinders under unplugged conditions.Considering the scale effects on the vibratory driving soil resistance,the proposed method leads to closer results to the measured data,providing a reference for future engineering practice.展开更多
Transparent conducting oxides CdIn2O4 thin films were prepared by radio-frequenc y reactive sputtering from a Cd-In alloy target in Ar+O2 atmosphere. By transmis sion spectrum and Hall measurement for different sample...Transparent conducting oxides CdIn2O4 thin films were prepared by radio-frequenc y reactive sputtering from a Cd-In alloy target in Ar+O2 atmosphere. By transmis sion spectrum and Hall measurement for different samples prepared at different s ubstrate temperatures, it could be found that the carrier concentration would in crease with the decrease of substrate temperature, but absorption edge showed an abrupt variation from a blue shift to a red shift. Theoretically, the paper for mulated the effect of high-density point defects on band structures; it embodied the formation of band tailing, Burstein-Moss shift and band-gap narrowing. The density of holes will influence the magnitude of optical band gap and transmitta nce of light. Since extrapolation method does not fit degenerate semiconductor m aterials, a more accurate method of obtaining optical band gap is curve fitting. In addition, ionized impurities scattering is the main damping mechanism of the free electrons in CdIn2O4 films, the density of ionized impurities induced by a ltering substrate temperature will affect the carriers mobility.展开更多
This paper illustrates an integrated energy design model based on the energy balance of a single zone. The results of energy efficient residential building design for the different climate zones of China by implementi...This paper illustrates an integrated energy design model based on the energy balance of a single zone. The results of energy efficient residential building design for the different climate zones of China by implementing an integrated energy model have been presented. Optimum measures of building design for typical Chinese residential buildings are introduced, with the objective of minimizingannual energy consumption for those buildings and improving thermal comfort. One overriding conclusion is that significant energy savings and thermal comfort can be achieved though optimum design.展开更多
From the orientation relationship between 'Ti11Ni14' phase and matrix phase (B2),the accurate molecular formula of 'Ti11N14' phase has been derived in this paper. The results also show that the rhomboh...From the orientation relationship between 'Ti11Ni14' phase and matrix phase (B2),the accurate molecular formula of 'Ti11N14' phase has been derived in this paper. The results also show that the rhombohedral unit cell of the 'Ti11Ni14' phase includes six Ti atoms, seven Ni atoms and one vacancy, belonging to space group R3.展开更多
The generalized time-dependent generator coordinate method(TD-GCM)is extended to include pairing correlations.The correlated GCM nuclear wave function is expressed in terms of time-dependent generator states and weigh...The generalized time-dependent generator coordinate method(TD-GCM)is extended to include pairing correlations.The correlated GCM nuclear wave function is expressed in terms of time-dependent generator states and weight functions.The particle–hole channel of the effective interaction is determined by a Hamiltonian derived from an energy density functional,while pairing is treated dynamically in the standard BCS approximation with time-dependent pairing tensor and single-particle occupation probabilities.With the inclusion of pairing correlations,various time-dependent phenomena in open-shell nuclei can be described more realistically.The model is applied to the description of saddle-to-scission dynamics of induced fission.The generalized TD-GCM charge yields and total kinetic energy distribution for the fission of 240Pu,are compared to those obtained using the standard time-dependent density functional theory(TD-DFT)approach,and with available data.展开更多
A(ZrC/SiC)_(3)alternate coating was deposited on sharp leading edge(SLE)C/C composites by chemical vapor deposition(CVD).The ablation behavior was examined via oxyacetylene torch with heat flux of 2.38 MW/m^2.The resu...A(ZrC/SiC)_(3)alternate coating was deposited on sharp leading edge(SLE)C/C composites by chemical vapor deposition(CVD).The ablation behavior was examined via oxyacetylene torch with heat flux of 2.38 MW/m^2.The results indicated that the alternate coating exhibited great ablation resistance,providing an effective protection for C/C composites.In initial rapid heating stage,the(ZrC/SiC)_(3) alternate coating can relieve thermal stress,avoiding the peeling of coating and keeping an intact coating structure.In subsequent ablation,the Si C layers in central region were consumed rapidly,leaving layered interspaces.Three stacked ZrO_(2) layers were reserved with the assistance of the release of thermal stress by interspaces,offering a great anti-scouring effect.In transition and border regions,the alternate Si C layers can delay oxygen erosion of inner coating and C/C substrate by the formation of SiO_(2).It is believed that the results would be helpful for the design and application of anti-ablation coatings on SLE C/C composites.展开更多
Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated ...Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated temperatures. The pinning force exerted by interaction between small dispersed particles and GBs strongly depends on size and volume fraction of the particles. Since metallic oxides, e.g. Al2O3, exhibit great structural stability and high resistance against coarsening at high temperatures, they are expected as effective stabilizers for NC materials. In this work, NC composites consisting of NC Fe and Al2O3 nanoparticIes with different amounts and sizes were prepared by high energy ball milling and annealed at various temperatures (Tann) for different time periods (tann). Microstructures of the ball milled and annealed samples were examined by X-ray diffraction and transmission electron microscopy. The results show that the addition of Al2O3 nanoparticles not only enhances the thermal stability of NC Fe grains but also reduces their coarsening rate at elevated temperatures, and reducing the particle size and/or increasing its amount enhance the stabilizing effect of the Al2O3 particles on the NC Fe grains.展开更多
Temperature-independent elastic modulus is termed as Elinvar effect,which is available by tuning the continuous spin transition of ferromagnetic alloys via composition optimization and the first-order martensitic tran...Temperature-independent elastic modulus is termed as Elinvar effect,which is available by tuning the continuous spin transition of ferromagnetic alloys via composition optimization and the first-order martensitic transformation of shape memory alloys via plastic deformation.However,these reversible mechanisms are restricted generally in a narrow temperature range of less than 300 K.Here reports,by tuning a spinodal decomposition in a Ti-Nb-based titanium alloy via aging treatment,both the Elinvar effect in a wide temperature range of about 500 K and a high strength-to-modulus ratio of about 1.5%can be obtained by a continuous and reversible crystal ordering mechanism.The results demonstrate that the alloy aged at 723 K for 4 h has a nanoscale plate-like modulatedβ+α"two-phase microstructure and its elastic modulus keeps almost constant from 100 to 600 K.Synchrotron and in-situ X-ray diffraction measurements reveal that the crystal ordering parameter of theα"phase increases linearly with temper-ature from 0.88 at 133 K to 0.97 at 523 K but its volume fraction keeps a constant of about 33.8%.This suggests that the continuous ordering of theα"phase toward the high modulusαphase induces a posi-tive modulus-temperature relation to balance the negative relation of the elastically stableβphase.The aged alloy exhibits a high yield strength of 1200 MPa,good ductility of 16%and a high elastic admissible strain of 1.5%.Our results provide a novel strategy to extend the Elinvar temperature range and enhance the strength by tuning the crystal ordering of decomposition alloys.展开更多
基金Bin Li gratefully thank support from the U.S.National Science Foundation(CMMI-1635088).
文摘It is well known that precipitation hardening in magnesium(Mg)alloys is far less effective than in aluminum alloys.Thus,it is important to understand the surface and interfacial structure and energetics between precipitates and matrix.In upscale modeling of magnesium alloys,these energy data are of great significance.In this work,we calculated the surface and interfacial energies of Mg_(17)Al_(12)-Mg system by carefully selecting the surface or interface termination,using atomistic simulations.The results show that,the higher fraction of Mg atoms on the surface,the lower the surface energy of Mg_(17)Al_(12).The interfacial energy of Mg/Mg_(17)Al_(12)was calculated in which the Burgers orientation relationship(OR)was satisfied.It was found that the(011)P|(0002)Mg interface has the lowest interfacial energy(248 mJ/m 2).Because the Burgers OR breaks when{10¯12}twin occurs,which reorients the matrix,the interfacial energy for Mg_(17)Al_(12)and a{10¯12}twin was also calculated.The results show that after twinning,the lowest interfacial energy increases by 244 mJ/m^(2),and the interface becomes highly incoherent due to the change in orientation relationship between Mg_(17)Al_(12)and the matrix.
基金the Zhejiang Provincial Natural Science Foundation(LY20H180009)the Qianjiang Talent Plan(QJD1803009)+2 种基金the Ningbo Science and Technology Service Industry Demonstration Project(2020F031)the Ningbo Natural Science Foundation(2018A610362)the Ministry of Science and Higher Education of the Russian Federation as part of the program for increasing the competitiveness of Samara University among the world's leading research and educational centers for 2013–2020.
文摘The aim of this study is to detect whether the quantitative textural features of optical coherencetomography angiography (OCTA) images can be used to detect the eyes in the early stage ofdiabetic retinopathy (DR) from eyes with diabetes and no DR (NDR). Textural features includingfractal dimension, contrast, correlation, entropy, energy, and homogeneity were calculatedfrom the OCTA images. The Student's t-test was performed to identify the textural featuresthat can be able to detect DR in the early stage. The area under the receiver operating characteristic(AUROC) curves, sensitivity, and specicity were calculated between the study groups.Our results indicated that the fractal dimension in ICP and SVP and the correlation in SVCshowed the statistical signicance between mild NPDR patients and NDR patients. The ROCanalysis results showed that the AUROC of the fractal dimension in ICP was 0.736 with 0.773sensitivity and 0.700 specicity. The cuto® point in ICP was 2.616. The OCTA-based fractaldimension was able to discriminate diabetic eyes with early retinopathy from healthy and NDRwith higher sensitivity and specicity. The OCTA-based correlation showed the power to differentiatethe mild NPDR eyes from the normal healthy and diabetic eyes. These results suggestthat texture-based features of OCTA have the potential to assist in the assessment of therapeuticinterventions to prevent early DR in diabetic subjects.
基金supported by the National Natural Science Foundation of China(52001267)Tianjin Port Engineering Institute Co.,Ltd.,and Eunsung O&C Offshore Marine and Construction(EUNSUNG19EG01).
文摘The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the lack of engineering experience on the drivability of large-diameter cylinders under multiple vibratory hammers,predicting the penetration rate and time of steel cylinders is an open challenge that has a considerable impact on the construction control of the HZMB.In this study,the vibratory penetration of large-diameter steel cylinders in the HZMB is investigated based on geological surveys,field monitoring,and drivability analysis.The vibratory penetration rate,installation accuracy,and dynamic responses of the steel cylinders at both the eastern and western artificial islands are analyzed.The dynamic soil resistance has a great influence on the cylinder drivability.However,the current design methods for estimating the vibratory driving soil resistance are proven inaccurate without considering the scale effects.Therefore,a modified method with a normalized effective area ratio A_(r,eff)is proposed in this study to calculate the vibratory soil resistance for open-ended thin-wall cylinders under unplugged conditions.Considering the scale effects on the vibratory driving soil resistance,the proposed method leads to closer results to the measured data,providing a reference for future engineering practice.
基金This work was supported by the National Natural Science Foundation of China(No,69876018).
文摘Transparent conducting oxides CdIn2O4 thin films were prepared by radio-frequenc y reactive sputtering from a Cd-In alloy target in Ar+O2 atmosphere. By transmis sion spectrum and Hall measurement for different samples prepared at different s ubstrate temperatures, it could be found that the carrier concentration would in crease with the decrease of substrate temperature, but absorption edge showed an abrupt variation from a blue shift to a red shift. Theoretically, the paper for mulated the effect of high-density point defects on band structures; it embodied the formation of band tailing, Burstein-Moss shift and band-gap narrowing. The density of holes will influence the magnitude of optical band gap and transmitta nce of light. Since extrapolation method does not fit degenerate semiconductor m aterials, a more accurate method of obtaining optical band gap is curve fitting. In addition, ionized impurities scattering is the main damping mechanism of the free electrons in CdIn2O4 films, the density of ionized impurities induced by a ltering substrate temperature will affect the carriers mobility.
文摘This paper illustrates an integrated energy design model based on the energy balance of a single zone. The results of energy efficient residential building design for the different climate zones of China by implementing an integrated energy model have been presented. Optimum measures of building design for typical Chinese residential buildings are introduced, with the objective of minimizingannual energy consumption for those buildings and improving thermal comfort. One overriding conclusion is that significant energy savings and thermal comfort can be achieved though optimum design.
文摘From the orientation relationship between 'Ti11Ni14' phase and matrix phase (B2),the accurate molecular formula of 'Ti11N14' phase has been derived in this paper. The results also show that the rhombohedral unit cell of the 'Ti11Ni14' phase includes six Ti atoms, seven Ni atoms and one vacancy, belonging to space group R3.
基金This work was supported in part by the Highend Foreign Experts Plan of China,the National Key R&D Program of China(Contract No.2018YFA0404400)the National Natural Science Foundation of China(Grant Nos.12070131001,11875075,11935003,11975031,and 12141501)+1 种基金the High-performance Computing Platform of Peking University,the QuantiXLie Centre of Excellence,a project co-financed by the Croatian Government and European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme(KK.01.1.1.01.0004)the Croatian Science Foundation under the project Uncertainty quantification within the nuclear energy density framework(IP-2018-01-5987).
文摘The generalized time-dependent generator coordinate method(TD-GCM)is extended to include pairing correlations.The correlated GCM nuclear wave function is expressed in terms of time-dependent generator states and weight functions.The particle–hole channel of the effective interaction is determined by a Hamiltonian derived from an energy density functional,while pairing is treated dynamically in the standard BCS approximation with time-dependent pairing tensor and single-particle occupation probabilities.With the inclusion of pairing correlations,various time-dependent phenomena in open-shell nuclei can be described more realistically.The model is applied to the description of saddle-to-scission dynamics of induced fission.The generalized TD-GCM charge yields and total kinetic energy distribution for the fission of 240Pu,are compared to those obtained using the standard time-dependent density functional theory(TD-DFT)approach,and with available data.
基金the National Natural Science Foundation of China(Nos.51727804,51821091,51872233)Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JQ-175)。
文摘A(ZrC/SiC)_(3)alternate coating was deposited on sharp leading edge(SLE)C/C composites by chemical vapor deposition(CVD).The ablation behavior was examined via oxyacetylene torch with heat flux of 2.38 MW/m^2.The results indicated that the alternate coating exhibited great ablation resistance,providing an effective protection for C/C composites.In initial rapid heating stage,the(ZrC/SiC)_(3) alternate coating can relieve thermal stress,avoiding the peeling of coating and keeping an intact coating structure.In subsequent ablation,the Si C layers in central region were consumed rapidly,leaving layered interspaces.Three stacked ZrO_(2) layers were reserved with the assistance of the release of thermal stress by interspaces,offering a great anti-scouring effect.In transition and border regions,the alternate Si C layers can delay oxygen erosion of inner coating and C/C substrate by the formation of SiO_(2).It is believed that the results would be helpful for the design and application of anti-ablation coatings on SLE C/C composites.
基金the National Key R&D Program of China (Project No. 2017YFB0703001)the National Natural Science Foundation of China (Nos. 51371147, 51101121, 51125002, 51134011, 51771153 and 51431008)+2 种基金the Research Fund of the State Key Lab. of Solidification Processing (NWPU) (No. 146-QZ2016)the Fundamental Research Funds for the Central Universities (No. 3102017jc03008)the Shaanxi Young Stars of Science and Technology (No. 2016KJXX-44) for financial supports
文摘Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated temperatures. The pinning force exerted by interaction between small dispersed particles and GBs strongly depends on size and volume fraction of the particles. Since metallic oxides, e.g. Al2O3, exhibit great structural stability and high resistance against coarsening at high temperatures, they are expected as effective stabilizers for NC materials. In this work, NC composites consisting of NC Fe and Al2O3 nanoparticIes with different amounts and sizes were prepared by high energy ball milling and annealed at various temperatures (Tann) for different time periods (tann). Microstructures of the ball milled and annealed samples were examined by X-ray diffraction and transmission electron microscopy. The results show that the addition of Al2O3 nanoparticles not only enhances the thermal stability of NC Fe grains but also reduces their coarsening rate at elevated temperatures, and reducing the particle size and/or increasing its amount enhance the stabilizing effect of the Al2O3 particles on the NC Fe grains.
基金supported by the National Natural Science Foundation of China (Nos.51771209 and 51901042)the Foun-dation 91960202 and CAS (No.QYZDJ-SSW-JSC031).
文摘Temperature-independent elastic modulus is termed as Elinvar effect,which is available by tuning the continuous spin transition of ferromagnetic alloys via composition optimization and the first-order martensitic transformation of shape memory alloys via plastic deformation.However,these reversible mechanisms are restricted generally in a narrow temperature range of less than 300 K.Here reports,by tuning a spinodal decomposition in a Ti-Nb-based titanium alloy via aging treatment,both the Elinvar effect in a wide temperature range of about 500 K and a high strength-to-modulus ratio of about 1.5%can be obtained by a continuous and reversible crystal ordering mechanism.The results demonstrate that the alloy aged at 723 K for 4 h has a nanoscale plate-like modulatedβ+α"two-phase microstructure and its elastic modulus keeps almost constant from 100 to 600 K.Synchrotron and in-situ X-ray diffraction measurements reveal that the crystal ordering parameter of theα"phase increases linearly with temper-ature from 0.88 at 133 K to 0.97 at 523 K but its volume fraction keeps a constant of about 33.8%.This suggests that the continuous ordering of theα"phase toward the high modulusαphase induces a posi-tive modulus-temperature relation to balance the negative relation of the elastically stableβphase.The aged alloy exhibits a high yield strength of 1200 MPa,good ductility of 16%and a high elastic admissible strain of 1.5%.Our results provide a novel strategy to extend the Elinvar temperature range and enhance the strength by tuning the crystal ordering of decomposition alloys.