Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated w...Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin(Rap) or N-acetyl-L-cysteine(NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3’-kinase/protein kinase B(Akt)/mammalian target of rapamycin(m TOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. Results Cd-induced activation of Akt/m TOR signaling, including Akt, m TOR, p70 S6 kinase(p70 S6K), and eukaryotic initiation factor 4E binding protein 1(4E-BP1). Rap, an m TOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/m TOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein(Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase(PARP), and nuclear translocation of apoptosis-inducing factor(AIF) and endonuclease G(Endo G). Conclusion Cd-induced ROS generation activates Akt/m TOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that m TOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases.展开更多
Objective To investigate the cytotoxic mechanism of cadmium(Cd) on cerebral cortical neurons.Methods The primary cultures of rat cerebral cortical neurons were treated with different concentrations of cadmium acetat...Objective To investigate the cytotoxic mechanism of cadmium(Cd) on cerebral cortical neurons.Methods The primary cultures of rat cerebral cortical neurons were treated with different concentrations of cadmium acetate(0,5,10,and 20 μmol/L),and then the cell viability,apoptosis,ultrastructure,intracellular [Ca2+]i and reactive oxygen species(ROS) levels,mitochondrial membrane potential(ΔΨ),activities of catalase(CAT) and superoxide dismutase(SOD) were measured.Results A progressive loss in cell viability and an increased number of apoptotic cells were observed.In addition,Cd-induced apoptotic morphological changes in cerebral cortical neurons were also demonstrated by Hoechst 33258 staining.Meanwhile,ultrastructural changes were distortion of mitochondrial cristae and an unusual arrangement.Simultaneously,elevation of intracellular [Ca2+]i and ROS levels,depletion of ΔΨ were revealed in a dose-dependent manner during the exposure.Moreover,CAT and SOD activities in the living cells increased significantly.Conclusion Exposure of cortical neurons to different doses of Cd led to cellular death,mediated by an apoptotic mechanism,and the apoptotic death induced by oxidative stress may be a potential reason.And the disorder of intracellular homeostasis caused by oxidative stress and mitochondrial dysfunction may be a trigger for apoptosis in cortical neurons.展开更多
Cadmium (Cd) is an elemental heavy metal with widely recognized toxicity. Its long-term use in industrial processes and daily activities has caused alarming levels of Cd contamination in the natural environment. Acc...Cadmium (Cd) is an elemental heavy metal with widely recognized toxicity. Its long-term use in industrial processes and daily activities has caused alarming levels of Cd contamination in the natural environment. According to the estimates by the Agency of Toxic Substances and Disease Registry in the US, 25 000 to 30 000 metric tons of Cd is annually released to the environment . Results of previous studies have demonstrated that several organs are targets of Cd, but the most important of these targeted organs may be the testes.展开更多
Zearalenone(ZEA),a non-steroidal estrogen-like mycotoxin biosynthesized by several Fusarium species through the polyketide pathway,is also known as the F-2 toxin[1].ZEA is one kind of common mycotoxins frequently foun...Zearalenone(ZEA),a non-steroidal estrogen-like mycotoxin biosynthesized by several Fusarium species through the polyketide pathway,is also known as the F-2 toxin[1].ZEA is one kind of common mycotoxins frequently found in feed ingredients and compound feed that can specifically and competitively bind to estrogen receptors resulting in sexual hormone disorder which can negatively affectthe expressi on of sec on dary sexual characteristics[2].展开更多
基金supported by the National Natural Science Foundation of China(No.31101866 and 31302058)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China Postdoctoral Science Foundation funded project(2015M581874)Jiangsu Planned Projects for Postdoctoral Research Funds(1501072A)
文摘Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin(Rap) or N-acetyl-L-cysteine(NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3’-kinase/protein kinase B(Akt)/mammalian target of rapamycin(m TOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. Results Cd-induced activation of Akt/m TOR signaling, including Akt, m TOR, p70 S6 kinase(p70 S6K), and eukaryotic initiation factor 4E binding protein 1(4E-BP1). Rap, an m TOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/m TOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein(Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase(PARP), and nuclear translocation of apoptosis-inducing factor(AIF) and endonuclease G(Endo G). Conclusion Cd-induced ROS generation activates Akt/m TOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that m TOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases.
基金supported by the National Nature Science Foundation of China (no.30972229 and 31101866)a project Funded by Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Objective To investigate the cytotoxic mechanism of cadmium(Cd) on cerebral cortical neurons.Methods The primary cultures of rat cerebral cortical neurons were treated with different concentrations of cadmium acetate(0,5,10,and 20 μmol/L),and then the cell viability,apoptosis,ultrastructure,intracellular [Ca2+]i and reactive oxygen species(ROS) levels,mitochondrial membrane potential(ΔΨ),activities of catalase(CAT) and superoxide dismutase(SOD) were measured.Results A progressive loss in cell viability and an increased number of apoptotic cells were observed.In addition,Cd-induced apoptotic morphological changes in cerebral cortical neurons were also demonstrated by Hoechst 33258 staining.Meanwhile,ultrastructural changes were distortion of mitochondrial cristae and an unusual arrangement.Simultaneously,elevation of intracellular [Ca2+]i and ROS levels,depletion of ΔΨ were revealed in a dose-dependent manner during the exposure.Moreover,CAT and SOD activities in the living cells increased significantly.Conclusion Exposure of cortical neurons to different doses of Cd led to cellular death,mediated by an apoptotic mechanism,and the apoptotic death induced by oxidative stress may be a potential reason.And the disorder of intracellular homeostasis caused by oxidative stress and mitochondrial dysfunction may be a trigger for apoptosis in cortical neurons.
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.08KJD230002)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Cadmium (Cd) is an elemental heavy metal with widely recognized toxicity. Its long-term use in industrial processes and daily activities has caused alarming levels of Cd contamination in the natural environment. According to the estimates by the Agency of Toxic Substances and Disease Registry in the US, 25 000 to 30 000 metric tons of Cd is annually released to the environment . Results of previous studies have demonstrated that several organs are targets of Cd, but the most important of these targeted organs may be the testes.
基金supported by the National Key Research and Development Program of China [No.2016YFD0501208]Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD]the Undergraduate Science and Innovation Fund Program of Yangzhou University [No.X20180625]
文摘Zearalenone(ZEA),a non-steroidal estrogen-like mycotoxin biosynthesized by several Fusarium species through the polyketide pathway,is also known as the F-2 toxin[1].ZEA is one kind of common mycotoxins frequently found in feed ingredients and compound feed that can specifically and competitively bind to estrogen receptors resulting in sexual hormone disorder which can negatively affectthe expressi on of sec on dary sexual characteristics[2].