期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of the Material Properties of Vehicle Suspension Coil Spring
1
作者 Issifu Imoro Jacob Kwaku Nkrumah +1 位作者 baba ziblim Abdul-Hamid Mohammed 《World Journal of Engineering and Technology》 2023年第4期827-858,共32页
The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the ... The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the vehicle with stability and ride comfort. The main objective of this study is to design a suspension coil spring made of structural steel for light duty vehicles with the aim of weight and cost reduction. This study was motivated by the government of Ghana’s actions to industrialise the automotive sector of the country through government policies and programs. The study made use of high carbon steel and low carbon steel as the control materials and structural steel as the implementing material. This was done to determine the suitability of structural steel for vehicle suspension coil spring. The study analysed parameters such as total deformation, equivalent Von Mises stress, maximum shear stress, and safety factor in the static structural analysis. The fatigue analysis also analysed parameters such as fatigue life and fatigue alternating stress. The results of the study revealed that the suspension spring made of structural steel has superior properties against all the parameters set for this study apart from deformation. The two control materials that are known for suspension coil spring design and manufacture have better properties to withstand deformation than the implementing material. 展开更多
关键词 Suspension Spring Unsprung Mass Fatigue Analysis Structural Analysis Ride Comfort Vehicle Stability
下载PDF
Modal and Thermal Analysis of a Modified Connecting Rod of an Internal Combustion Engine Using Finite Element Method
2
作者 Nkrumah Jacob Kwaku baba ziblim +1 位作者 Sulemana Yahaya Sherry Kwabla Amedorme 《Modeling and Numerical Simulation of Material Science》 2023年第3期29-49,共21页
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec... The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy. 展开更多
关键词 Connecting Rod Steady-State Thermal Analysis DEFORMATION Heat Flux Thermal and Modal Finite Element Method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部