This paper introduces Soccer League Competition (SLC) algorithm as a new optimization technique for solving nonlinear systems of equations. Fundamental ideas of the method are inspired from soccer leagues and based on...This paper introduces Soccer League Competition (SLC) algorithm as a new optimization technique for solving nonlinear systems of equations. Fundamental ideas of the method are inspired from soccer leagues and based on the competitions among teams and players. Like other meta-heuristic methods, the proposed technique starts with an initial population. Population individuals called players are in two types: fixed players and substitutes that all together form some teams. The competition among teams to take the possession of the top ranked positions in the league table and the internal competitions between players in each team for personal improvements results in the convergence of population individuals to the global optimum. Results of applying the proposed algorithm in solving nonlinear systems of equations demonstrate that SLC converges to the answer more accurately and rapidly in comparison with other Meta-heuristic and Newton-type methods.展开更多
文摘This paper introduces Soccer League Competition (SLC) algorithm as a new optimization technique for solving nonlinear systems of equations. Fundamental ideas of the method are inspired from soccer leagues and based on the competitions among teams and players. Like other meta-heuristic methods, the proposed technique starts with an initial population. Population individuals called players are in two types: fixed players and substitutes that all together form some teams. The competition among teams to take the possession of the top ranked positions in the league table and the internal competitions between players in each team for personal improvements results in the convergence of population individuals to the global optimum. Results of applying the proposed algorithm in solving nonlinear systems of equations demonstrate that SLC converges to the answer more accurately and rapidly in comparison with other Meta-heuristic and Newton-type methods.