期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Litter age interacted with N and P addition to impact soil N_(2)O emissions in Cunninghamia lanceolata plantations 被引量:1
1
作者 Shuli Wang Xi Yuan +9 位作者 Ling Zhang Fusheng Chen Xiangmin Fang Xiaojun Liu bangliang deng Nasir Shad Wenyuan Zhang Xiaofei Hu Xiaomin Guo Evan Siemann 《Journal of Plant Ecology》 SCIE CSCD 2022年第4期771-782,共12页
Litter decomposition impacts carbon(C)and nutrient cycling.Nitrogen(N)and phosphorus(P)addition as well as litter age impact litter decomposition.Effects of nutrient addition and litter age on litter decomposition may... Litter decomposition impacts carbon(C)and nutrient cycling.Nitrogen(N)and phosphorus(P)addition as well as litter age impact litter decomposition.Effects of nutrient addition and litter age on litter decomposition may impact emissions of soil nitrous oxide(N_(2)O),which is an important greenhouse gas.However,no study has examined the effects of interactions between litter age and nutrient addition on soil N_(2)O emissions,and explored the underlining mechanisms simultaneously,thus limiting our evaluation of litter decomposition effects on N_(2)O emissions.Litter with different age was collected from Cunninghamia lanceolata plantations experienced N and P addition treatments to examine the effects of nutrient addition and litter age on N_(2)O emissions by incubation study.Litter age generally increased N_(2)O emissions via a decrease in litter C:N ratio.While P addition decreased N_(2)O emissions,N addition increased them mainly by positive effects on soil enzymes as indicated by microbial functional genes associated with N_(2)O production and negative effects on litter C:N ratio.Litter age and nutrient addition interacted to impact soil N_(2)O emissions.In future forest management,both nutrient addition and litter age should be considered in evaluation of management effects on N_(2)O emissions,especially thinning or selectively cutting involving litter input with different age. 展开更多
关键词 Chinese fir functional genes greenhouse gases litter decomposition N_(2)O mitigation path analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部