Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target ...Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.展开更多
An experiment for studying the effects of sediment dredging on denitrification in sediments was carried out through a one-year incubation of undredged (control) and dredged cores in laboratory. Dredging the upper 30...An experiment for studying the effects of sediment dredging on denitrification in sediments was carried out through a one-year incubation of undredged (control) and dredged cores in laboratory. Dredging the upper 30 cm of sediment can significantly affect physico-chemical characteristics of sediments. Less degradation of organic matter in the dredged sediments was found during the experiment. Denitrification rates in the sediments were estimated by the acetylene blockage technique, and ranged from 21.6 to 102.7 nmol N2/(g dry weight (dw)-hr) for the undredged sediment and from 6.9 to 26.9 nmol N2/(g dw-hr) for dredged sediments. The denitrification rates in the undredged sediments were markedly higher (p 〈 0.05) than those in the dredged sediments throughout the incubation, with the exception of February 2006. The importance of various environmental factors on denitrification was assessed, which indicated that denitrification was regulated by temperature. Nitrate was probably the key factor limiting denitrification in both undredged and dredged sediments. Organic carbon played some role in determining the denitrification rates in the dredged sediments, but not in the undredged sediments. Sediment dredging influenced the mineralization of organic matter and denitrification in the sediment; and therefore changed the pattern of inherent cycling of nitrogen.展开更多
On the basis of the present situation of oil and gas exploration and geological research of the west slope in the northern Songliao Basin, the factors controlling reservoir formation, oil and gas migration and accumul...On the basis of the present situation of oil and gas exploration and geological research of the west slope in the northern Songliao Basin, the factors controlling reservoir formation, oil and gas migration and accumulation, have been re-examined from the aspects of structure, deposition and reservoir formation. The results show that:(1) The west slope is a gentle slope which overlaps to the west, and nose structure is developed near the hydrocarbon generation depression, which is in the dominant direction area of hydrocarbon migration. A series of NE structural belts are developed on the slope and are favorable places for oil and gas accumulation.(2) The west slope can be further divided into the upper slope and the lower slope, and there are many kinds of oil and gas reservoirs, including structural, structural-lithologic and lithologic ones. In the upper slope, the major oil layer is Sartu controlled by structure;in the lower slope, multi-layers are oil-bearing, and the oil reservoirs are mostly composite ones.(3) Faults, unconformity surfaces and continuous sand bodies are the main channels of oil and gas migration;structure, sand body and fault jointly control the oil and gas enrichment in the slope;and the matching relationship between micro-amplitude and sand body, small fault and sand body control the oil and gas accumulation. On the basis of the above research, fine identification and effectiveness evaluation technology of composite trap has been developed through extensive study. Combination traps were identified by multiple technologies, including fault classification, micro-amplitude structure identification, fine sedimentation research, and lithologic trap identification by waveform indication inversion;and then the configuration relationship between fault and sand body, structural amplitude and sand body were analyzed to set up the evaluation criteria of effective traps. According to the criteria, the traps were selected to enhance the exploration success rate.展开更多
FEM (Finite Element Method) has been widely used to solve temperature in hot rolling. The heat gen-erating rate of electromagnetic field has been discussed in order to improve the efficiency and accuracy in the soluti...FEM (Finite Element Method) has been widely used to solve temperature in hot rolling. The heat gen-erating rate of electromagnetic field has been discussed in order to improve the efficiency and accuracy in the solution of induction heating. A new heat generating rate model was proposed and derived from the calculated results by FEM software in consideration of work frequency, source current density, and the air gap between induction coil and slab. The calculated distribution of heat generating rate in the skin depth by the model is satisfying and reliable compared with that of FEM software. Then, the mathematic model of the heat generating rate model is considered as the density of heat reservoir to solve the temperature in induction heating. Moreover, the temperature evolution of slab in induction heating from a hot rolling plant has been solved by the developed FE code and the calculated temperature has a good agreement with the measured value. Therefore, the heat generating rate model is suitable and efficiency to solve the temperature in induction heating by FEM.展开更多
基金supported by Guangdong Basic and Applied Basic Research Foundation(2023A1515010969)Natural Science Foundation of Top Talent of SZTU(GDRC202305).
文摘Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.
基金supported by the National Natural Science Foundation of China (No.40730528,40901253)the Social Development Key Project and Natural Science Foundation of Jiangsu Province (No.BE2009603,BK2009333)the Knowledge Innovation Program of Chinese Academy of Sciences (No.CXNIGLAS200804)
文摘An experiment for studying the effects of sediment dredging on denitrification in sediments was carried out through a one-year incubation of undredged (control) and dredged cores in laboratory. Dredging the upper 30 cm of sediment can significantly affect physico-chemical characteristics of sediments. Less degradation of organic matter in the dredged sediments was found during the experiment. Denitrification rates in the sediments were estimated by the acetylene blockage technique, and ranged from 21.6 to 102.7 nmol N2/(g dry weight (dw)-hr) for the undredged sediment and from 6.9 to 26.9 nmol N2/(g dw-hr) for dredged sediments. The denitrification rates in the undredged sediments were markedly higher (p 〈 0.05) than those in the dredged sediments throughout the incubation, with the exception of February 2006. The importance of various environmental factors on denitrification was assessed, which indicated that denitrification was regulated by temperature. Nitrate was probably the key factor limiting denitrification in both undredged and dredged sediments. Organic carbon played some role in determining the denitrification rates in the dredged sediments, but not in the undredged sediments. Sediment dredging influenced the mineralization of organic matter and denitrification in the sediment; and therefore changed the pattern of inherent cycling of nitrogen.
基金Supported by the China National Science and Technology Major Project (2017ZX05001-002)
文摘On the basis of the present situation of oil and gas exploration and geological research of the west slope in the northern Songliao Basin, the factors controlling reservoir formation, oil and gas migration and accumulation, have been re-examined from the aspects of structure, deposition and reservoir formation. The results show that:(1) The west slope is a gentle slope which overlaps to the west, and nose structure is developed near the hydrocarbon generation depression, which is in the dominant direction area of hydrocarbon migration. A series of NE structural belts are developed on the slope and are favorable places for oil and gas accumulation.(2) The west slope can be further divided into the upper slope and the lower slope, and there are many kinds of oil and gas reservoirs, including structural, structural-lithologic and lithologic ones. In the upper slope, the major oil layer is Sartu controlled by structure;in the lower slope, multi-layers are oil-bearing, and the oil reservoirs are mostly composite ones.(3) Faults, unconformity surfaces and continuous sand bodies are the main channels of oil and gas migration;structure, sand body and fault jointly control the oil and gas enrichment in the slope;and the matching relationship between micro-amplitude and sand body, small fault and sand body control the oil and gas accumulation. On the basis of the above research, fine identification and effectiveness evaluation technology of composite trap has been developed through extensive study. Combination traps were identified by multiple technologies, including fault classification, micro-amplitude structure identification, fine sedimentation research, and lithologic trap identification by waveform indication inversion;and then the configuration relationship between fault and sand body, structural amplitude and sand body were analyzed to set up the evaluation criteria of effective traps. According to the criteria, the traps were selected to enhance the exploration success rate.
文摘FEM (Finite Element Method) has been widely used to solve temperature in hot rolling. The heat gen-erating rate of electromagnetic field has been discussed in order to improve the efficiency and accuracy in the solution of induction heating. A new heat generating rate model was proposed and derived from the calculated results by FEM software in consideration of work frequency, source current density, and the air gap between induction coil and slab. The calculated distribution of heat generating rate in the skin depth by the model is satisfying and reliable compared with that of FEM software. Then, the mathematic model of the heat generating rate model is considered as the density of heat reservoir to solve the temperature in induction heating. Moreover, the temperature evolution of slab in induction heating from a hot rolling plant has been solved by the developed FE code and the calculated temperature has a good agreement with the measured value. Therefore, the heat generating rate model is suitable and efficiency to solve the temperature in induction heating by FEM.