In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylin...In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations. Moreover, an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions. The results of simulation exhibited the evolution process of RM instability, and the effect of Atwood number was studied. The larger the absolute value of Atwood number, the larger the perturbation amplitude. The nonlinear effect manifests more evidently in cylindrical geometry. The shock reflected from the pole center accelerates the interface for the second time, considerably complicating the interface evolution process, and such phenomena of reshock and secondary shock were studied.展开更多
For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a "0 = 0" equation when the volume fraction of a certain phase takes the value of zero or unity. ...For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a "0 = 0" equation when the volume fraction of a certain phase takes the value of zero or unity. This is because the conservative variables in phasedensity equations include volume fractions. The degeneracy can be avoided by adding an artificial quantity of another material into the pure phase. However, nonphysical waves,such as shear waves in fluids, are introduced by the artificial treatment. In this paper,a transport diffuse interface model, which is able to treat zero/unity volume fractions, is presented for solid-fluid interaction. In the proposed model, a new formulation for phase densities is derived, which is unrelated to volume fractions. Consequently, the new model is able to handle zero/unity volume fractions, and nonphysical waves caused by artificial volume fractions are prevented. One-dimensional and two-dimensional numerical tests demonstrate that more accurate results can be obtained by the proposed model.展开更多
The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final ...The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final stage of recovery. This study proposes a novel legged deployable landing mechanism (LDLM) for RLV. The Watt-II six-bar mechanism is adopted to obtain the preferred configuration via the application of the linkage variation approach. To endow the proposed LDLM with advantages of large landing support region, lightweight, and reasonable linkage internal forces, a multi-objective optimization paradigm is developed. Furthermore, the optimal scale parameters for guiding the LDLM prototype design is obtained numerically using the non-dominated sorting genetic algorithm-II (NSGA-II) evolutionary algorithm. A fully-functional scaled RLV prototype is developed by integrating the gravity-governed deploying scheme to facilitate unfolding action to avoid full-range actuation, a dual-backup locking mechanism to enhance reliability of structure stiffening as fully deployed, and a shock absorber (SA) with multistage honeycomb to offer reliable shock absorbing performance. The experimental results demonstrate that the proposed LDLM is capable of providing rapid and smooth deployment (duration less than 1.5 s) with mild posture disturbance to the cabin (yaw and pitch fluctuations less than 6°). In addition, it provides satisfactory impact attenuation (acceleration peak less than 10g (g is the gravitational acceleration)) in the 0.2 m freefall test, which makes the proposed LDLM a potential alternative for developing future RLV archetype.展开更多
We discuss evolutions of nonlinear features in Richtmyer-Meshkov instability(RMI)f which are known as spikes and bubbles.In single-phase RMI,the nonlinear growth has been extensively studied but the relevant investiga...We discuss evolutions of nonlinear features in Richtmyer-Meshkov instability(RMI)f which are known as spikes and bubbles.In single-phase RMI,the nonlinear growth has been extensively studied but the relevant investigation in multiphase RMI is insufficient.Therefore,we illustrate the dynamic coupling behaviors between gas phase and particle phase and then analyze the growth of the nonlinear features theoretically.A universal model is proposed to describe the nonlinear finger(spike and bubble)growth velocity qualitatively in multiphase RMI.Both the effects of gas and particles have been taken into consideration in this model.Further,we derive the analytical expressions of the nonlinear growth model in limit cases(equilibrium How and frozen How).A novel compressible multiphase particle-in-cell(CMP-PIC)method is used to validate the applicability of this model.Numerical finger growth velocity matches well with our model.The present study reveals that particle volume fraction,particle density and Stokes number are the three key factors,which dominate the interphase momentum exchange and further induce the unique property of multiphase RMI.展开更多
A cell-centered Lagrangian scheme is developed for the numerical simula-tion of wave propagations in one dimensional(1D)elastic-plasticflow.The classical elastic-plastic material model initially proposed by Wilkins is ...A cell-centered Lagrangian scheme is developed for the numerical simula-tion of wave propagations in one dimensional(1D)elastic-plasticflow.The classical elastic-plastic material model initially proposed by Wilkins is adopted.The linear elas-tic model(Hooke’s Law),perfectly plastic model and von Mises yield criterion are used to describe the constitutive relationship of elastic-plastic solid.The second-order ex-tension of this scheme is achieved by a linear reconstruction method.Various numer-ical tests are simulated to check the capability of this scheme in capturing nonlinear elastic-plastic waves.Compared with the well-developed operator splitting method used in simulating elastic-plasticflow,this scheme is more accurate due to the con-sideration of a list of 64 different types of the nonlinear elastic-plastic waves when constructing the elastic-perfectly plastic Riemann solver.The numerical simulations of typical examples show competitive results.展开更多
In this paper, we apply arbitrary Riemann solvers, which may not satisfy the Maire's requirement, to the Maire's node-based Lagrangian scheme developed in [P. H. Maire et al., SIAM J. Sci. Comput, 29 (2007), 1781-...In this paper, we apply arbitrary Riemann solvers, which may not satisfy the Maire's requirement, to the Maire's node-based Lagrangian scheme developed in [P. H. Maire et al., SIAM J. Sci. Comput, 29 (2007), 1781-1824]. In particular, we apply the so-called Multi-Fluid Channel on Averaged Volume (MFCAV) Riemann solver and a Riemann solver that adaptively combines the MFCAV solver with other more dissipative Riemann solvers to the Maire's scheme. It is noted that neither of the two solvers satisfies the Maire's requirement. Numerical experiments are presented to demonstrate that the application of the two Riemann solvers is successful.展开更多
When the integrity of airway epithelium is destroyed,the ordered airway barrier no longer exists and increases sensitivity to viral infections and allergens,leading to the occurrence of airway inflammation such as ast...When the integrity of airway epithelium is destroyed,the ordered airway barrier no longer exists and increases sensitivity to viral infections and allergens,leading to the occurrence of airway inflammation such as asthma.Here,we found that galectin-7 transgenic(+)mice exhibited abnormal airway structures as embryos and after birth.These abnormalities included absent or substantially reduced pseudostratified columnar ciliated epithelium and increased monolayer cells with irregular arrangement and widening of intercellular spaces.Moreover,airway tissue from galectin-7 transgenic(+)mice showed evidence of impaired cell–cell junctions and decreased expression of zonula occludens-1(ZO-1)and E-cadherin.When treated with respiratory syncytial virus(RSV)or ovalbumin(OVA),galectin-7 transgenic(+)mice developed substantially increased bronchial epithelial detachment and apoptosis,airway smooth muscle and basement membrane thickening,and enhanced airway responsiveness.We found that Galectin-7 localized in the cytoplasm and nucleus of bronchial epithelial cells,and that increased apoptosis was mediated through mitochondrial release of cytochrome c and upregulated JNK1 activation and expression of caspase-3 in galectin-7 Tg(+)mice.These findings suggested that Galectin-7 causes airway structural defects and destroys airway epithelium barrier,which predispose the airways to RSV or OVA-induced epithelial apoptosis,injury,and other asthma responses.展开更多
In this paper,a gas kinetic scheme for the compressible multicomponent flows is presented by making use of two-species BGK model in[A.D.Kotelnikov and D.C.Montgomery,A Kinetic Method for Computing Inhomogeneous Fluid ...In this paper,a gas kinetic scheme for the compressible multicomponent flows is presented by making use of two-species BGK model in[A.D.Kotelnikov and D.C.Montgomery,A Kinetic Method for Computing Inhomogeneous Fluid Behavior,J.Comput.Phys.134(1997)364-388].Different from the conventional BGK model,the collisions between different species are taken into consideration.Based on the Chapman-Enskog expansion,the corresponding macroscopic equations are derived from this two-species model.Because of the relaxation terms in the governing equations,the method of operator splitting is applied.In the hyperbolic part,the integral solutions of the BGK equations are used to construct the numerical fluxes at the cell interface in the framework of finite volume method.Numerical tests are presented in this paper to validate the current approach for the compressible multicomponent flows.The theoretical analysis on the spurious oscillations at the interface is also presented.展开更多
基金The project supported by the National Natural Science Foundation of China (10176033, 10135010 and 90205025)The English text was polished by Yunming Chen
文摘In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations. Moreover, an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions. The results of simulation exhibited the evolution process of RM instability, and the effect of Atwood number was studied. The larger the absolute value of Atwood number, the larger the perturbation amplitude. The nonlinear effect manifests more evidently in cylindrical geometry. The shock reflected from the pole center accelerates the interface for the second time, considerably complicating the interface evolution process, and such phenomena of reshock and secondary shock were studied.
基金Project supported by the National Natural Science Foundation of China(Nos.11702029,11771054,U1730118,91852207,and 11801036)the China Postdoctoral Science Foundation(No.2016M600967)
文摘For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a "0 = 0" equation when the volume fraction of a certain phase takes the value of zero or unity. This is because the conservative variables in phasedensity equations include volume fractions. The degeneracy can be avoided by adding an artificial quantity of another material into the pure phase. However, nonphysical waves,such as shear waves in fluids, are introduced by the artificial treatment. In this paper,a transport diffuse interface model, which is able to treat zero/unity volume fractions, is presented for solid-fluid interaction. In the proposed model, a new formulation for phase densities is derived, which is unrelated to volume fractions. Consequently, the new model is able to handle zero/unity volume fractions, and nonphysical waves caused by artificial volume fractions are prevented. One-dimensional and two-dimensional numerical tests demonstrate that more accurate results can be obtained by the proposed model.
文摘The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final stage of recovery. This study proposes a novel legged deployable landing mechanism (LDLM) for RLV. The Watt-II six-bar mechanism is adopted to obtain the preferred configuration via the application of the linkage variation approach. To endow the proposed LDLM with advantages of large landing support region, lightweight, and reasonable linkage internal forces, a multi-objective optimization paradigm is developed. Furthermore, the optimal scale parameters for guiding the LDLM prototype design is obtained numerically using the non-dominated sorting genetic algorithm-II (NSGA-II) evolutionary algorithm. A fully-functional scaled RLV prototype is developed by integrating the gravity-governed deploying scheme to facilitate unfolding action to avoid full-range actuation, a dual-backup locking mechanism to enhance reliability of structure stiffening as fully deployed, and a shock absorber (SA) with multistage honeycomb to offer reliable shock absorbing performance. The experimental results demonstrate that the proposed LDLM is capable of providing rapid and smooth deployment (duration less than 1.5 s) with mild posture disturbance to the cabin (yaw and pitch fluctuations less than 6°). In addition, it provides satisfactory impact attenuation (acceleration peak less than 10g (g is the gravitational acceleration)) in the 0.2 m freefall test, which makes the proposed LDLM a potential alternative for developing future RLV archetype.
基金the National Natural Science Foundation of China under Grant Nos.91852207,11801036,11502029the NSAF under Grant No.U1630247.
文摘We discuss evolutions of nonlinear features in Richtmyer-Meshkov instability(RMI)f which are known as spikes and bubbles.In single-phase RMI,the nonlinear growth has been extensively studied but the relevant investigation in multiphase RMI is insufficient.Therefore,we illustrate the dynamic coupling behaviors between gas phase and particle phase and then analyze the growth of the nonlinear features theoretically.A universal model is proposed to describe the nonlinear finger(spike and bubble)growth velocity qualitatively in multiphase RMI.Both the effects of gas and particles have been taken into consideration in this model.Further,we derive the analytical expressions of the nonlinear growth model in limit cases(equilibrium How and frozen How).A novel compressible multiphase particle-in-cell(CMP-PIC)method is used to validate the applicability of this model.Numerical finger growth velocity matches well with our model.The present study reveals that particle volume fraction,particle density and Stokes number are the three key factors,which dominate the interphase momentum exchange and further induce the unique property of multiphase RMI.
基金The author would like to thank the referees for the helpful suggestions.This work is supported by National Science Foundation of China(Grants Nos.12002062,91852207,11801036,12002063 and 11972093)NSFC-NSAF Joint Fund(Grants No.U1730118)+1 种基金President Foundation of CAEP(Grant No.YZJJLX2018012)National Key Project(Grant No.GJXM92579).
文摘A cell-centered Lagrangian scheme is developed for the numerical simula-tion of wave propagations in one dimensional(1D)elastic-plasticflow.The classical elastic-plastic material model initially proposed by Wilkins is adopted.The linear elas-tic model(Hooke’s Law),perfectly plastic model and von Mises yield criterion are used to describe the constitutive relationship of elastic-plastic solid.The second-order ex-tension of this scheme is achieved by a linear reconstruction method.Various numer-ical tests are simulated to check the capability of this scheme in capturing nonlinear elastic-plastic waves.Compared with the well-developed operator splitting method used in simulating elastic-plasticflow,this scheme is more accurate due to the con-sideration of a list of 64 different types of the nonlinear elastic-plastic waves when constructing the elastic-perfectly plastic Riemann solver.The numerical simulations of typical examples show competitive results.
文摘In this paper, we apply arbitrary Riemann solvers, which may not satisfy the Maire's requirement, to the Maire's node-based Lagrangian scheme developed in [P. H. Maire et al., SIAM J. Sci. Comput, 29 (2007), 1781-1824]. In particular, we apply the so-called Multi-Fluid Channel on Averaged Volume (MFCAV) Riemann solver and a Riemann solver that adaptively combines the MFCAV solver with other more dissipative Riemann solvers to the Maire's scheme. It is noted that neither of the two solvers satisfies the Maire's requirement. Numerical experiments are presented to demonstrate that the application of the two Riemann solvers is successful.
基金This study was supported by the National Natural Science Foundation of China(81070017 and 81370124)。
文摘When the integrity of airway epithelium is destroyed,the ordered airway barrier no longer exists and increases sensitivity to viral infections and allergens,leading to the occurrence of airway inflammation such as asthma.Here,we found that galectin-7 transgenic(+)mice exhibited abnormal airway structures as embryos and after birth.These abnormalities included absent or substantially reduced pseudostratified columnar ciliated epithelium and increased monolayer cells with irregular arrangement and widening of intercellular spaces.Moreover,airway tissue from galectin-7 transgenic(+)mice showed evidence of impaired cell–cell junctions and decreased expression of zonula occludens-1(ZO-1)and E-cadherin.When treated with respiratory syncytial virus(RSV)or ovalbumin(OVA),galectin-7 transgenic(+)mice developed substantially increased bronchial epithelial detachment and apoptosis,airway smooth muscle and basement membrane thickening,and enhanced airway responsiveness.We found that Galectin-7 localized in the cytoplasm and nucleus of bronchial epithelial cells,and that increased apoptosis was mediated through mitochondrial release of cytochrome c and upregulated JNK1 activation and expression of caspase-3 in galectin-7 Tg(+)mice.These findings suggested that Galectin-7 causes airway structural defects and destroys airway epithelium barrier,which predispose the airways to RSV or OVA-induced epithelial apoptosis,injury,and other asthma responses.
基金Natural Science Foundation of China(NSFC)No.10931004,No.11171037 and No.91130021.
文摘In this paper,a gas kinetic scheme for the compressible multicomponent flows is presented by making use of two-species BGK model in[A.D.Kotelnikov and D.C.Montgomery,A Kinetic Method for Computing Inhomogeneous Fluid Behavior,J.Comput.Phys.134(1997)364-388].Different from the conventional BGK model,the collisions between different species are taken into consideration.Based on the Chapman-Enskog expansion,the corresponding macroscopic equations are derived from this two-species model.Because of the relaxation terms in the governing equations,the method of operator splitting is applied.In the hyperbolic part,the integral solutions of the BGK equations are used to construct the numerical fluxes at the cell interface in the framework of finite volume method.Numerical tests are presented in this paper to validate the current approach for the compressible multicomponent flows.The theoretical analysis on the spurious oscillations at the interface is also presented.