期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications
1
作者 Panpan Che baoshan xie +7 位作者 Penghui Cao Youfu Lv Daifei Liu Huali Zhu Xianwen Wu Zhangxing He Jian Chen Chuanchang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期1945-1964,共20页
The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage ... The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials. 展开更多
关键词 electrospinning-hot pressing technique thermal storage electrical storage composite membranes NANOFIBER
下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage
2
作者 baoshan xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
下载PDF
Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage 被引量:7
3
作者 Dongyao Zhang Chuanchang Li +2 位作者 Niangzhi Lin baoshan xie Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期168-176,共9页
Mica was used as a supporting matrix for composite phase change materials(PCMs)in this work because of its distinctive morphology and structure.Composite PCMs were prepared using the vacuum impregnation method,in whic... Mica was used as a supporting matrix for composite phase change materials(PCMs)in this work because of its distinctive morphology and structure.Composite PCMs were prepared using the vacuum impregnation method,in which mica served as the supporting material and polyethylene glycol(PEG)served as the PCM.Fourier transform infrared and X-ray diffraction analysis confirmed that the addition of PEG had no effect on the crystal structure of mica.Moreover,no chemical reaction occurred between PEG and mica during the vacuum impregnation process,and no new substance was formed.The maximum load of mica-stabilized PEG was 46.24%,the phase change temperature of M_(400)/PEG was 46.03℃,and the latent heat values of melting and cooling were 77.75 and 77.73 J·g^(−1),respectively.The thermal conductivity of M_(400)/PEG was 2.4 times that of pure PEG.The thermal infrared images indicated that the thermal response of M_(400)/PEG improved relative to that of pure PEG.The leakage test confirmed that mica could stabilize PEG and that M_(400)/PEG had great form-stabilized property.These results demonstrate that M_(400)/PEG has potential in the field of building energy conservation. 展开更多
关键词 MICA polyethylene glycol phase change materials thermal energy storage
下载PDF
Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage 被引量:3
4
作者 Xinbo Zhao Chuanchang Li +3 位作者 Kaihao Bai baoshan xie Jian Chen Qingxia Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1419-1428,共10页
This paper used 3 types of graphite with different physical structures as the porous matrix to prepare composite phase change materials(PCMs),and investigated their photo-thermal conversion performance and application... This paper used 3 types of graphite with different physical structures as the porous matrix to prepare composite phase change materials(PCMs),and investigated their photo-thermal conversion performance and application in battery thermal management.Multiple structure graphite minerals,including microcrystalline graphite(MG),scale graphite(SG),and expanded graphite(EG)were used as porous matrix,while stearic acid(SA)acts as the phase change material.The vacuum impregnation method was applied to prepare SA/MG,SA/SG,SA/EG,and SA/MG1,and SA/EG1was/were prepared by the ethyl alcohol method.Results show that the thermal conductivities of all composite phase change materials were 10.82 to 22.06 times higher than that of the pure SA.Thermogravimetric(TG)analysis showed that the loadages of SA were 43.61%,18.74%,and 92.66%for SA/MG,SA/SG,and SA/EG respectively.The load rates of SA were 18.98%and 18.88%for SA/MG1 and SA/EG1,respectively.For the 3 types of graphite materials of different dimensions,the BET(Brunauer,Emmett,and Teller)surface area determines the maximum load of SA.The Fourier-transform infrared(FTIR)and X-ray diffraction(XRD)results indicated that there was good compatibility between the SA and the supports.The SA/EG1 has better thermophysical properties in heat energy storage and release process.The thermal infrared images show that SA/EG1 has higher sensitivity to the temperature changes.SA/EG1 has better photo-heat conversion performance than SA/SG and SA/MG1 attributed to the multilayer structure of EG.SA/EG has better thermal management performance in the Li-ion batteries discharge process. 展开更多
关键词 Phase change material Microcrystalline graphite Scale graphite Expanded graphite Photo-thermal conversion Thermal management
下载PDF
Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater 被引量:6
5
作者 baoshan xie Chuanchang Li +3 位作者 Bo Zhang Lixin Yang Guiyu Xiao Jian Chen 《Energy and Built Environment》 2020年第2期187-198,共12页
This work presents a cost-effective and environment-friendly form-stabilized phase change material(PCM)and corresponding solar thermal application in the tankless solar water heater(TSWH).Coconut shell charcoal(CSC)as... This work presents a cost-effective and environment-friendly form-stabilized phase change material(PCM)and corresponding solar thermal application in the tankless solar water heater(TSWH).Coconut shell charcoal(CSC)as supporting material was modified by moderate oxidant of H_(2)O_(2)with different concentrations,and then sta-bilized stearic acid(SA)to prepare composite PCMs through vacuum impregnation.It found that CSC support causes a 15.70%improvement of SA loadage after treated by 15%H_(2)O_(2)due to coefficient enhancement by phys-ical interaction and surface modification.The modified CSC 15 support appears more super macropores which contribute to the impregnation of SA than non-modified CSC 0 support verifying from SEM and BET results.And the content of oxygen functional groups was increased after oxidation modification,also motivating SA stabiliza-tion by hydrogen bond interaction in XPS analysis.FTIR results proved there is no chemical reaction happened between SA and CSC.Moreover,the latent heat and phase transition temperature of the as-prepared SA/CSC 15 composite are 76.69 J g^(−1)and 52.52℃,respectively.All composites exhibit excellent thermal stability under a working temperature of 180℃and form stability during phase change.Thermal energy storage-release test within 70℃presents the composite has fast heat transfer efficiency than pure SA.The composite filled in TSWH system has 0.75 W m^(−1)K^(−1)thermal conductivity which is 2.88 times higher than that of pure SA(0.26 W m^(−1)K−1).Besides,the TSWH system with a flow rate of 0.004 kg s^(−1)could heat water effectively after sunset and the energy obtained from the thermal storage system within 1830 s testing times is about 0.15 kW h.In all,SA/CSC composite with good physical-thermo properties has potential in thermal energy storage application,especially in solar energy storage. 展开更多
关键词 Phase change materials Thermal energy storage Coconut shell charcoal H_(2)O_(2)modification Tankless solar water heater
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部