Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay...Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.展开更多
Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered b...Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered by the absence of inexpensive high-performance electrocatalysts for the hydrogen evolution reaction (HER).Re-based HER electrocatalysts exhibit predictable high performance within the entire pH range but suffer from arduous formation (i.e.,vulnerability to oxidation) and uncontrollable aggregation,which strongly discourages the maximisation of active site exposure required for activity enhancement.To overcome these limitations,we herein hydrothermally synthesise Re nanoclusters uniformly distributed on nanosheet supports,such as reduced graphene oxide nanosheets (Re NCs@rGO),revealing that this hybrid features abundant exposed active sites and high oxidation resistance.The obtained electrocatalysts were elaborately characterized by microscopic and spectroscopic analyses.Also,density functional theory calculations confirm the optimised synthesis of Re NCs@rGO and indicate the crucial role of Re–O–C junction formation in securing durability.The effective suppression of Re nanocluster detachment/dissolution under HER conditions endows Re NCs@rGO with high electron conductivity and electrochemical stability,resulting in a durability superior to that of commercial Pt/C and an activity similar to that of this reference.As a result,Re NCs@rGO exhibited remarkably small HER overpotentials of 110,130,and 93 m V to deliver a current density of 10 mA cm^(-2) in 0.5 M H_(2)SO_(4),1 M PBS,and 1 M KOH,respectively.Thus,Re NCs@rGO is a promising alternative to conventional Pt-group-metal catalysts and should find applications in next-generation high-performance water splitting systems.展开更多
基金supported by the National Research Foundation(NRF)grants(2022R1A4A1032832 and 2019R1A6A1A10073079)funded by the Korean government(MSIT)
文摘Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.
基金supported by research grants of the NRF (2019K1A3A1A21032033 and 2021R1A4A1024129) funded by the National Research Foundation under the Ministry of Science, ICT & Future, Koreasupported by the Korea Institute for Advancement of Technology (KIAT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (P0017363)。
文摘Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered by the absence of inexpensive high-performance electrocatalysts for the hydrogen evolution reaction (HER).Re-based HER electrocatalysts exhibit predictable high performance within the entire pH range but suffer from arduous formation (i.e.,vulnerability to oxidation) and uncontrollable aggregation,which strongly discourages the maximisation of active site exposure required for activity enhancement.To overcome these limitations,we herein hydrothermally synthesise Re nanoclusters uniformly distributed on nanosheet supports,such as reduced graphene oxide nanosheets (Re NCs@rGO),revealing that this hybrid features abundant exposed active sites and high oxidation resistance.The obtained electrocatalysts were elaborately characterized by microscopic and spectroscopic analyses.Also,density functional theory calculations confirm the optimised synthesis of Re NCs@rGO and indicate the crucial role of Re–O–C junction formation in securing durability.The effective suppression of Re nanocluster detachment/dissolution under HER conditions endows Re NCs@rGO with high electron conductivity and electrochemical stability,resulting in a durability superior to that of commercial Pt/C and an activity similar to that of this reference.As a result,Re NCs@rGO exhibited remarkably small HER overpotentials of 110,130,and 93 m V to deliver a current density of 10 mA cm^(-2) in 0.5 M H_(2)SO_(4),1 M PBS,and 1 M KOH,respectively.Thus,Re NCs@rGO is a promising alternative to conventional Pt-group-metal catalysts and should find applications in next-generation high-performance water splitting systems.